15,154 research outputs found
Analysis of GLCM Parameters for Textures Classification on UMD Database Images
Texture analysis is one of the most important techniques that have been used in image processing for many purposes, including image classification. The texture determines the region of a given gray level image, and reflects its relevant information. Several methods of analysis have been invented and developed to deal with texture in recent years, and each one has its own method of extracting features from the texture. These methods can be divided into two main approaches: statistical methods and processing methods. Gray Level Co-occurrence Matrix (GLCM) is the most popular statistical method used to get features from the texture. In addition to GLCM, a number of equations of Haralick characteristics will be used to calculate values used as discriminate features among different images in this study. There are many parameters of GLCM that should be taken into consideration to increase the discrimination between images belonging to different classes. In this study, we aim to evaluate GLCM parameters. For three decades now, GLCM is popular method used for texture analysis. Neural network which is one of supervised methods will also be used as a classifier. And finally, the database for this study will be images prepared from UMD (University of Maryland database)
Recommended from our members
Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis.
Radiomics is an emerging technology for imaging biomarker discovery and disease-specific personalized treatment management. This paper aims to determine the benefit of using multi-modality radiomics data from PET and MR images in the characterization breast cancer phenotype and prognosis. Eighty-four features were extracted from PET and MR images of 113 breast cancer patients. Unsupervised clustering based on PET and MRI radiomic features created three subgroups. These derived subgroups were statistically significantly associated with tumor grade (p = 2.0 × 10-6), tumor overall stage (p = 0.037), breast cancer subtypes (p = 0.0085), and disease recurrence status (p = 0.0053). The PET-derived first-order statistics and gray level co-occurrence matrix (GLCM) textural features were discriminative of breast cancer tumor grade, which was confirmed by the results of L2-regularization logistic regression (with repeated nested cross-validation) with an estimated area under the receiver operating characteristic curve (AUC) of 0.76 (95% confidence interval (CI) = [0.62, 0.83]). The results of ElasticNet logistic regression indicated that PET and MR radiomics distinguished recurrence-free survival, with a mean AUC of 0.75 (95% CI = [0.62, 0.88]) and 0.68 (95% CI = [0.58, 0.81]) for 1 and 2 years, respectively. The MRI-derived GLCM inverse difference moment normalized (IDMN) and the PET-derived GLCM cluster prominence were among the key features in the predictive models for recurrence-free survival. In conclusion, radiomic features from PET and MR images could be helpful in deciphering breast cancer phenotypes and may have potential as imaging biomarkers for prediction of breast cancer recurrence-free survival
Quantitative Ultrasound and B-mode Image Texture Features Correlate with Collagen and Myelin Content in Human Ulnar Nerve Fascicles
We investigate the usefulness of quantitative ultrasound (QUS) and B-mode
texture features for characterization of ulnar nerve fascicles. Ultrasound data
were acquired from cadaveric specimens using a nominal 30 MHz probe. Next, the
nerves were extracted to prepare histology sections. 85 fascicles were matched
between the B-mode images and the histology sections. For each fascicle image,
we selected an intra-fascicular region of interest. We used histology sections
to determine features related to the concentration of collagen and myelin, and
ultrasound data to calculate backscatter coefficient (-24.89 dB 8.31),
attenuation coefficient (0.92 db/cm-MHz 0.04), Nakagami parameter (1.01
0.18) and entropy (6.92 0.83), as well as B-mode texture features
obtained via the gray level co-occurrence matrix algorithm. Significant
Spearman's rank correlations between the combined collagen and myelin
concentrations were obtained for the backscatter coefficient (R=-0.68), entropy
(R=-0.51), and for several texture features. Our study demonstrates that QUS
may potentially provide information on structural components of nerve
fascicles
Multi texture analysis of colorectal cancer continuum using multispectral imagery
Purpose
This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma.
Materials and Methods
In the proposed approach, the region of interest containing PT is first extracted from multispectral
images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models.
Results
Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%.
Conclusions
These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images
- …
