15,154 research outputs found

    Analysis of GLCM Parameters for Textures Classification on UMD Database Images

    Get PDF
    Texture analysis is one of the most important techniques that have been used in image processing for many purposes, including image classification. The texture determines the region of a given gray level image, and reflects its relevant information. Several methods of analysis have been invented and developed to deal with texture in recent years, and each one has its own method of extracting features from the texture. These methods can be divided into two main approaches: statistical methods and processing methods. Gray Level Co-occurrence Matrix (GLCM) is the most popular statistical method used to get features from the texture. In addition to GLCM, a number of equations of Haralick characteristics will be used to calculate values used as discriminate features among different images in this study. There are many parameters of GLCM that should be taken into consideration to increase the discrimination between images belonging to different classes. In this study, we aim to evaluate GLCM parameters. For three decades now, GLCM is popular method used for texture analysis. Neural network which is one of supervised methods will also be used as a classifier. And finally, the database for this study will be images prepared from UMD (University of Maryland database)

    Quantitative Ultrasound and B-mode Image Texture Features Correlate with Collagen and Myelin Content in Human Ulnar Nerve Fascicles

    Get PDF
    We investigate the usefulness of quantitative ultrasound (QUS) and B-mode texture features for characterization of ulnar nerve fascicles. Ultrasound data were acquired from cadaveric specimens using a nominal 30 MHz probe. Next, the nerves were extracted to prepare histology sections. 85 fascicles were matched between the B-mode images and the histology sections. For each fascicle image, we selected an intra-fascicular region of interest. We used histology sections to determine features related to the concentration of collagen and myelin, and ultrasound data to calculate backscatter coefficient (-24.89 dB ±\pm 8.31), attenuation coefficient (0.92 db/cm-MHz ±\pm 0.04), Nakagami parameter (1.01 ±\pm 0.18) and entropy (6.92 ±\pm 0.83), as well as B-mode texture features obtained via the gray level co-occurrence matrix algorithm. Significant Spearman's rank correlations between the combined collagen and myelin concentrations were obtained for the backscatter coefficient (R=-0.68), entropy (R=-0.51), and for several texture features. Our study demonstrates that QUS may potentially provide information on structural components of nerve fascicles

    Multi texture analysis of colorectal cancer continuum using multispectral imagery

    Get PDF
    Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images
    corecore