969 research outputs found
Recommended from our members
Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides.
BACKGROUND:Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. RESULTS:The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. CONCLUSION:This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism
Mutant-based model of two independent pathways for carotenoid-mediated chloroplast biogenesis in Arabidopsis embryos
Chloroplasts are essential for autonomous plant growth, and their biogenesis is a complex process requiring both plastid and nuclear genome. One of the essential factors required for chloroplast biogenesis are carotenoids. Carotenoids are synthesized in plastids, and it was shown that plastid localized methylerythritol 4-phosphate (MEP) pathway provides substrates for their biosynthesis. Here, we propose a model, using results of our own mutant analysis combined with the results of others, that a MEP-independent pathway, likely a mevalonate (MVA)-dependent pathway, provides intermediates for chloroplast biogenesis in Arabidopsis embryos. The pattern of this chloroplast biogenesis differs from the MEP-dependent chloroplast biogenesis. In MEP-dependent chloroplast biogenesis, chloroplasts are formed rather uniformly in the whole embryo, with stronger chlorophyll accumulation in cotyledons. In a MEP-independent pathway, chloroplasts are formed predominantly in the hypocotyl and in the embryonic root. We also show that this pattern of chlorophyll accumulation is common to MEP pathway mutants as well as to the mutant lacking geranylgeranyl diphosphate synthase 11 (GGPPS11) activity in plastids but expressing it in the cytosol (GGPPS11cyt). It was recently described that shorter GGPPS11 transcripts are present in Arabidopsis, and they can be translated into active cytosolic proteins. We therefore propose that the MEP-independent pathway for chloroplast biogenesis in Arabidopsis embryos is an MVA pathway that provides substrates for the synthesis of GGPP via GGPPS11cyt and this is then transported to plastids, where it is used for carotenoid biosynthesis and subsequently for chloroplast biogenesis mainly in the hypocotyl and in the embryonic root
De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug.
Insects use a diverse array of specialized terpene metabolites as pheromones in intraspecific interactions. In contrast to plants and microbes, which employ enzymes called terpene synthases (TPSs) to synthesize terpene metabolites, limited information from few species is available about the enzymatic mechanisms underlying terpene pheromone biosynthesis in insects. Several stink bugs (Hemiptera: Pentatomidae), among them severe agricultural pests, release 15-carbon sesquiterpenes with a bisabolene skeleton as sex or aggregation pheromones. The harlequin bug, Murgantia histrionica, a specialist pest of crucifers, uses two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol as a male-released aggregation pheromone called murgantiol. We show that MhTPS (MhIDS-1), an enzyme unrelated to plant and microbial TPSs but with similarity to trans-isoprenyl diphosphate synthases (IDS) of the core terpene biosynthetic pathway, catalyzes the formation of (1S,6S,7R)-1,10-bisaboladien-1-ol (sesquipiperitol) as a terpene intermediate in murgantiol biosynthesis. Sesquipiperitol, a so-far-unknown compound in animals, also occurs in plants, indicating convergent evolution in the biosynthesis of this sesquiterpene. RNAi-mediated knockdown of MhTPS mRNA confirmed the role of MhTPS in murgantiol biosynthesis. MhTPS expression is highly specific to tissues lining the cuticle of the abdominal sternites of mature males. Phylogenetic analysis suggests that MhTPS is derived from a trans-IDS progenitor and diverged from bona fide trans-IDS proteins including MhIDS-2, which functions as an (E,E)-farnesyl diphosphate (FPP) synthase. Structure-guided mutagenesis revealed several residues critical to MhTPS and MhFPPS activity. The emergence of an IDS-like protein with TPS activity in M. histrionica demonstrates that de novo terpene biosynthesis evolved in the Hemiptera in an adaptation for intraspecific communication
Characterization of the GGPP synthase gene family in Arabidopsis thaliana
Geranylgeranyl diphosphate (GGPP) is a key precursor of various isoprenoids that have diverse functions in plant metabolism and development. The annotation of the Arabidopsis thaliana genome predicts 12 genes to encode geranylgeranyl diphosphate synthases (GGPPS). In this study we analyzed GGPPS activity as well as the subcellular localization and tissue-specific expression of the entire protein family in A. thaliana. GGPPS2 (At2g18620), GGPPS3 (At2g18640), GGPPS6 (At3g14530), GGPPS7 (At3g14550), GGPPS8 (At3g20160), GGPPS9 (At3g29430), GGPPS10 (At3g32040) and GGPPS11 (At4g36810) showed GGPPS activity in Escherichia coli, similar to activities reported earlier for GGPPS1 (At1g49530) and GGPPS4 (At2g23800) (Zhu et al. in Plant Cell Physiol 38(3):357-361, 1997a; Plant Mol Biol 35(3):331-341, b). GGPPS12 (At4g38460) did not produce GGPP in E. coli. Based on DNA sequence analysis we propose that GGPPS5 (At3g14510) is a pseudogene. GGPPS-GFP (green fluorescent protein) fusion proteins of the ten functional GGPP synthases localized to plastids, mitochondria and the endoplasmic reticulum, with the majority of the enzymes located in plastids. Gene expression analysis using quantitative real time-PCR, GGPPS promoter-GUS (β-glucuronidase) assays and publicly available microarray data revealed a differential spatio-temporal expression of GGPPS genes. The results suggest that plastids and mitochondria are key subcellular compartments for the synthesis of ubiquitous GGPP-derived isoprenoid species. GGPPS11 and GGPPS1 are the major isozymes responsible for their biosynthesis. All remaining paralogs, encoding six plastidial isozymes and two cytosolic isozymes, were expressed in specific tissues and/or at specific developmental stages, suggesting their role in developmentally regulated isoprenoid biosynthesis. Our results show that of the 12 predicted GGPPS encoded in the A. thaliana genome 10 are functional proteins that can synthesize GGPP. Their specific subcellular location and differential expression pattern suggest subfunctionalization in providing GGPP to specific tissues, developmental stages, or metabolic pathway
Marginal integration for nonparametric causal inference
We consider the problem of inferring the total causal effect of a single
variable intervention on a (response) variable of interest. We propose a
certain marginal integration regression technique for a very general class of
potentially nonlinear structural equation models (SEMs) with known structure,
or at least known superset of adjustment variables: we call the procedure
S-mint regression. We easily derive that it achieves the convergence rate as
for nonparametric regression: for example, single variable intervention effects
can be estimated with convergence rate assuming smoothness with
twice differentiable functions. Our result can also be seen as a major
robustness property with respect to model misspecification which goes much
beyond the notion of double robustness. Furthermore, when the structure of the
SEM is not known, we can estimate (the equivalence class of) the directed
acyclic graph corresponding to the SEM, and then proceed by using S-mint based
on these estimates. We empirically compare the S-mint regression method with
more classical approaches and argue that the former is indeed more robust, more
reliable and substantially simpler.Comment: 40 pages, 14 figure
New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition.
Isoprenoids form an extensive group of natural products involved in a number of important biological processes. Their biosynthesis proceeds through sequential 1'-4 condensations of isopentenyl diphosphate (C(5)) with an allylic acceptor, the first of which is dimethylallyl diphosphate (C(5)). The reactions leading to the production of geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)) and geranylgeranyl diphosphate (C(20)), which are the precursors of mono-, sesqui- and diterpenes, respectively, are catalyzed by a group of highly conserved enzymes known as short-chain isoprenyl diphosphate synthases, or prenyltransferases. In recent years, the sequences of many new prenyltransferases have become available, including those of several plant and animal geranyl diphosphate synthases, revealing novel mechanisms of product chain-length selectivity and an intricate evolutionary path from a putative common ancestor. Finally, there is considerable interest in designing inhibitors specific to short-chain prenyltransferases, for the purpose of developing new drugs or pesticides that target the isoprenoid biosynthetic pathway
Recommended from our members
GGPPS1 predicts the biological character of hepatocellular carcinoma in patients with cirrhosis
Background: Hepatocellular carcinoma (HCC) has been associated with diabetes and obesity, but a possible connection with the metabolic syndrome (MetS) and its potential interaction with hepatitis and cirrhosis are open to discussion. Our previous investigations have shown that GGPPS1 plays a critical role during hyperinsulinism. In this report, the expression and distribution of GGPPS1 in liver cancer, and its clinical significance were investigated. Methods: 70 patients with hepatocellular carcinoma (HCC) were included in this study. Three different types of tissues from each HCC patient were assembled immediately after surgical resection: tumor-free tissue >5 cm far from tumor edge (TF), adjacent nonmalignant tissue within 2 cm (AT), and tissue from the tumor (TT). Normal liver tissues from 10 liver transplant donors served as healthy control (HC) while 10 patients with liver cirrhosis as cirrhosis control (CC). The expression and distribution of GGPPS1 were detected by immunohistochemistry, western blots, or real-time PCR. The relationship between the expression of GGPPS1 and clinic pathologic index were analyzed. Results: We found that GGPPS1 was intensified mainly in the cytoplasm of liver tumor cells. Both the expression of GGPPS1 mRNA and protein were upregulated in TT comparing to AT or TF. Meanwhile, HCC patients with cirrhosis had relative higher expression of GGPPS1. In addition, many pathologic characters show close correlation with GGPPS1, such as tumor stage, vessel invasion, and early recurrence. Conclusion: GGPPS1 may play a critical role during the development of HCC from cirrhosis and is of clinical significance for predicting biological character of HCC
Desenvolupament embrionari i fotosíntesi en mans d'un sol gen
Un grup d'investigació del CRAG ha descobert que un gen d'Arabidopsis thaliana codifica per a dues proteïnes essencials, una per a la fotosíntesi i una altra per al desenvolupament embrionari. Ara analitzarà si aquest mecanisme es dóna també en altres espècies d'interès agronòmic, perquè podria ajudar a millorar la qualitat de les llavors o el creixement de les plantes.Un grupo de investigación del Centro de Investigación en Agrigenòmica (CRAG) ha descubierto que un gen de Arabidopsis thaliana codifica para dos proteínas esenciales, una para la fotosíntesis y otra para el desarrollo embrionario. Ahora analizará si este mecanismo se da también en otras especies de interés agronómico, porque podría ayudar a mejorar la calidad de las semillas o el crecimiento de las plantas.A research group from CRAG discovers that one gene from Arabidopsis thaliana encodes for two essential proteins, one necessary for photosynthesis and another one necessary for embryo development. The next step for the research team will be to analyze if this mechanism is replicated in species of agronomic interest, which it could have a great impact in improving seed quality and plant growth
Metabolic engineering of micronutrients in crop plants
Micronutrient deficiency is a widespread phenomenon, most prevalent in developing countries. Being causally linked to the occurrence of a range of diseases, it affects billions of people worldwide. Enhancing the content of micronutrients in crop products through biotechnology is a promising technique to fight micronutrient malnutrition worldwide. Micronutrient fortification of food products has been implemented in a number of Western countries, but remains inaccessible for poor rural populations in a major part of the developing world. Moreover, evidence of the negative impacts of this practice on human health, at least for some vitamins, is accumulating. Biofortification of crop plants-the enhancement of vitamins and minerals through plant biotechnology-is a promising alternative or complement in the battle against micronutrient deficiencies. Owing to a growing knowledge about vitamin metabolism, as well as mineral uptake and reallocation in plants, it is today possible to enhance micronutrient levels in crop plants, offering a sustainable solution to populations with a suboptimal micronutrient intake
- …
