222,528 research outputs found
Transcription as a Threat to Genome Integrity
Genomes undergo different types of sporadic alterations, including DNA damage, point mutations, and genome rearrangements, that constitute the basis for evolution. However, these changes may occur at high levels as a result of cell pathology and trigger genome instability, a hallmark of cancer and a number of genetic diseases. In the last two decades, evidence has accumulated that transcription constitutes an important natural source of DNA metabolic errors that can compromise the integrity of the genome. Transcription can create the conditions for high levels of mutations and recombination by its ability to open the DNA structure and remodel chromatin, making it more accessible to DNA insulting agents, and by its ability to become a barrier to DNA replication. Here we review the molecular basis of such events from a mechanistic perspective with particular emphasis on the role of transcription as a genome instability determinant
Inactivation of Plasmodium falciparum in whole blood by riboflavin plus irradiation.
BACKGROUND: Malaria parasites are frequently transmitted by unscreened blood transfusions in Africa. Pathogen reduction methods in whole blood would thus greatly improve blood safety. We aimed to determine the efficacy of riboflavin plus irradiation for treatment of whole blood infected with Plasmodium falciparum. STUDY DESIGN AND METHODS: Blood was inoculated with 10(4) or 10(5) parasites/mL and riboflavin treated with or without ultraviolet (UV) irradiation (40-160 J/mL red blood cells [mL(RBCs)]). Parasite genome integrity was assessed by quantitative amplification inhibition assays, and P. falciparum viability was monitored in vitro. RESULTS: Riboflavin alone did not affect parasite genome integrity or parasite viability. Application of UV after riboflavin treatment disrupted parasite genome integrity, reducing polymerase-dependent amplification by up to 2 logs (99%). At 80 J/mL(RBCs), riboflavin plus irradiation prevented recovery of viable parasites in vitro for 2 weeks, whereas untreated controls typically recovered to approximately 2% parasitemia after 4 days of in vitro culture. Exposure of blood to 160 J/mL(RBCs) was not associated with significant hemolysis. CONCLUSIONS: Riboflavin plus irradiation treatment of whole blood damages parasite genomes and drastically reduces P. falciparum viability in vitro. In the absence of suitable malaria screening assays, parasite inactivation should be investigated for prevention of transfusion-transmitted malaria in highly endemic areas
Genome Integrity: A new open access journal
The full and final version of this article can be found at the link belowThis article has been made available through the Brunel Open Access Publishing Fund.This article is available through the Brunel Open Access Publishing Fund
The DNA damage response acts as a safeguardagainst harmful DNA–RNA hybrids ofdifferent origins
Despite playing physiological roles in specific situations, DNA–RNA hybrids threat genome integrity. To investigate how cells do counteract spontaneous DNA–RNA hybrids, here we screen an siRNA library covering 240 human DNA damage response (DDR) genes and select siRNAs causing DNA–RNA hybrid accumulation and a significant increase in hybrid‐dependent DNA breakage. We identify post‐replicative repair and DNA damage checkpoint factors, including those of the ATM/CHK2 and ATR/CHK1 pathways. Thus, spontaneous DNA–RNA hybrids are likely a major source of replication stress, but they can also accumulate and menace genome integrity as a consequence of unrepaired DSBs and post‐replicative ssDNA gaps in normal cells. We show that DNA–RNA hybrid accumulation correlates with increased DNA damage and chromatin compaction marks. Our results suggest that different mechanisms can lead to DNA–RNA hybrids with distinct consequences for replication and DNA dynamics at each cell cycle stage and support the conclusion that DNA–RNA hybrids are a common source of spontaneous DNA damage that remains unsolved under a deficient DDR.European Research Council (ERC2014AdG669898TARLOOP)Worldwide Cancer Research (WCR15-00098
Multipartite viruses: A decentralized mode of functioning. [O.24]
Multipartite viruses are characterized by a genome composed of two or more nucleic acid segments, each encapsidated indivually. A classical view in virology assumes that the viral replication cycle occurs within individual cells, where the whole viral genome information is replicated, and is then reiterated in successively infected cells during host invasion. In the context of multipartite viruses, this view implies that at least one copy of each of the genome segments must enter in each of the infected cells. The genome of the Faba bean necrotic stunt virus (FBNSV, Family Nanoviridae) is composed of 8 ssDNA circles of about 1000 bases, each encapsidated in an individual virus particle. We have previously shown that each of the eight segments reproducibly accumulates at a specific relative frequency, some representing around 30% of the total viral DNA within an infected plant and others not exceeding 2%. In this situation, it is difficult to conceive how FBNSV can actually transmit the whole genome information both from cell to cell and from host to host. If the segments enter cells indifferently, solely according to their frequency within the population, we could calculate that a successful infection of 95% of the susceptible cells would require the entry of nearly 200 particles per cell. This figure illustrates the enormous cost that FBNSV might bear at each cell-to-cell transmission step. Alternatively, this virus might infect individual cells with subgroups of genome segments, partial genome information being replicated at distinct location within a host. This may alleviate the cost at cell-to-cell passage but would imply a sort of unknown viral communication or complementation in between these subgroups of segments to maintain the integrity of the genome information. In any cases, the actual functioning of FBNSV is an enigma, because it is hard to conceive that a virus could force hundreds of particles in each newly colonized cells, or that the genome could function with separate subunits in distinct cells. We are currently developing tools to test the above alternatives. (Résumé d'auteur
Human mitochondrial degradosome prevents harmful mitochondrial R loops and mitochondrial genome instability
R loops are nucleic acid structures comprising an DNA-RNA hybrid and a displaced single-stranded DNA. These structures may occur transiently during transcription, playing essential biological functions. However, persistent R loops may become pathological as they are important drivers of genome instability and have been associated with human diseases. The mitochondrial degradosome is a functionally conserved complex from bacteria to human mitochondria. It is composed of the ATP-dependent RNA and DNA helicase SUV3 and the PNPase ribonuclease, playing a central role in mitochondrial RNA surveillance and degradation. Here we describe a new role for the mitochondrial degradosome in preventing the accumulation of pathological R loops in the mitochondrial DNA, in addition to preventing dsRNA accumulation. Our data indicate that, similar to the molecular mechanisms acting in the nucleus, RNA surveillance mechanisms in the mitochondria are crucial to maintain its genome integrity by counteracting pathological R-loop accumulation.European Research Council ERC2014 AdG669898 TARLOOPMinisterio de Economía y Competitividad BFU2013-42918-P, BFU2016-75058-
Dietary unsaturated fatty acids affect the mammary gland integrity and health in lactating dairy cows
Background Information about the effects of unsaturated fatty acids (UFA) supplementation on the health and integrity of the mammary gland in lactating dairy cows is lacking. Therefore, the aim of this study was to determine the effects of unprotected dietary UFA on the global expression pattern of genes in the mammary gland tissue of grazing dairy cows, and to translate this information into relevant biological knowledge. Methods Twenty-eight Holstein-Friesian dairy cows were randomly assigned to 4 different concentrated UFA-sources for 23 days after which all cows were switched to a non-UFA-supplemented concentrate for an additional 28 days. On the last day of both periods, mammary gland biopsies were taken to study genome-wide differences in gene expression on Bovine Genome Arrays. Results Supplementation with UFA reduced the concentration of short chain fatty acids (FA), C16 FA and saturated FA in the milk, whereas that of trans-FA increased. One major finding was that canonical pathways associated with remodelling and immune functions of the mammary gland were predominantly down-regulated during UFA supplementation and negatively correlated with the concentration of milk trans-FA. Conclusions Supplementing grazing dairy cows with unprotected dietary UFA can affect the remodelling and immune functions of the mammary gland with potential consequences for its integrity and health, as well as milk quality
Impaired oxidative stress response characterizes HUWE1-promoted X-linked intellectual disability.
Mutations in the HECT, UBA and WWE domain-containing 1 (HUWE1) E3 ubiquitin ligase cause neurodevelopmental disorder X-linked intellectual disability (XLID). HUWE1 regulates essential processes such as genome integrity maintenance. Alterations in the genome integrity and accumulation of mutations have been tightly associated with the onset of neurodevelopmental disorders. Though HUWE1 mutations are clearly implicated in XLID and HUWE1 regulatory functions well explored, currently much is unknown about the molecular basis of HUWE1-promoted XLID. Here we showed that the HUWE1 expression is altered and mutation frequency increased in three different XLID individual (HUWE1 p.R2981H, p.R4187C and HUWE1 duplication) cell lines. The effect was most prominent in HUWE1 p.R4187C XLID cells and was accompanied with decreased DNA repair capacity and hypersensitivity to oxidative stress. Analysis of HUWE1 substrates revealed XLID-specific down-regulation of oxidative stress response DNA polymerase (Pol) λ caused by hyperactive HUWE1 p.R4187C. The subsequent restoration of Polλ levels counteracted the oxidative hypersensitivity. The observed alterations in the genome integrity maintenance may be particularly relevant in the cortical progenitor zones of human brain, as suggested by HUWE1 immunofluorescence analysis of cerebral organoids. These results provide evidence that impairments of the fundamental cellular processes, like genome integrity maintenance, characterize HUWE1-promoted XLID
Depletion of the MFAP1/SPP381 Splicing Factor Causes R-Loop-Independent Genome Instability
THO/TREX is a conserved complex with a role in messenger ribonucleoprotein biogenesis that links gene expression and genome instability. Here, we show that human THO interacts with MFAP1 (microfibrillar-associated protein 1), a spliceosome-associated factor. Interestingly, MFAP1 depletion impairs cell proliferation and genome integrity, increasing γH2AX foci and DNA breaks. This phenotype is not dependent on either transcription or RNA-DNA hybrids. Mutations in the yeast orthologous gene SPP381 cause similar transcription-independent genome instability, supporting a conserved role. MFAP1 depletion has a wide effect on splicing and gene expression in human cells, determined by transcriptome analyses. MFAP1 depletion affects a number of DNA damage response (DDR) genes, which supports an indirect role of MFAP1 on genome integrity. Our work defines a functional interaction between THO and RNA processing and argues that splicing factors may contribute to genome integrity indirectly by regulating the expression of DDR genes rather than by a direct role.European ResearchCouncil (grant ERC2014 AdG669898 TARLOOP)Junta de Andalucía Spain (grant BIO1238)Spanish Ministry of Economy and Competitiveness (grant BFU2016-75058-P
- …
