3,155,342 research outputs found

    Light-matter interactions in multi-element resonators

    Full text link
    We investigate structural resonances in multi-element optical resonators and provide a roadmap for the description of the interaction of single extended cavity modes with quantum emitters or mechanical resonators. Using a first principle approach based on the transfer matrix formalism we analyze, both numerically and analytically, the static and dynamical properties of three- and four-mirror cavities. We investigate in particular conditions under which the confinement of the field in specific subcavities allows for enhanced light-matter interactions in the context of cavity quantum electrodynamics and cavity optomechanics

    Strong coupling and long-range collective interactions in optomechanical arrays

    Get PDF
    We investigate the collective optomechanics of an ensemble of scatterers inside a Fabry-Perot resonator and identify an optimized configuration where the ensemble is transmissive, in contrast with the usual reflective optomechanics approach. In this configuration, the optomechanical coupling of a specific collective mechanical mode can be several orders of magnitude larger than the single-element case, and long-range interactions can be generated between the different elements since light permeates throughout the array. This new regime should realistically allow for achieving strong single-photon optomechanical coupling with massive resonators, realizing hybrid quantum interfaces, and exploiting collective long-range interactions in arrays of atoms or mechanical oscillators.Comment: 11 pages, 12 figure

    Prospects of reinforcement learning for the simultaneous damping of many mechanical modes

    Get PDF
    We apply adaptive feedback for the partial refrigeration of a mechanical resonator, i.e. with the aim to simultaneously cool the classical thermal motion of more than one vibrational degree of freedom. The feedback is obtained from a neural network parametrized policy trained via a reinforcement learning strategy to choose the correct sequence of actions from a finite set in order to simultaneously reduce the energy of many modes of vibration. The actions are realized either as optical modulations of the spring constants in the so-called quadratic optomechanical coupling regime or as radiation pressure induced momentum kicks in the linear coupling regime. As a proof of principle we numerically illustrate efficient simultaneous cooling of four independent modes with an overall strong reduction of the total system temperature.Comment: Machine learning in Optomechanics: coolin

    Enhanced optomechanical readout using optical coalescence

    Get PDF
    We present a scheme to strongly enhance the readout sensitivity of the squared displacement of a mobile scatterer placed in a Fabry-P\'erot cavity. We investigate the largely unexplored regime of cavity electrodynamics in which a highly reflective element positioned between the end mirrors of a symmetric Fabry-P\'erot resonator strongly modifies the cavity response function, such that two longitudinal modes with different spatial parity are brought close to frequency degeneracy and interfere in the cavity output field. In the case of a movable middle reflector we show that the interference in this generic "optical coalescence" phenomenon gives rise to an enhanced frequency shift of the peaks of the cavity transmission that can be exploited in optomechanics.Comment: 5 pages, 3 figure

    Atomic entanglement generation with reduced decoherence via four-wave mixing

    Get PDF
    In most proposals for the generation of entanglement in large ensembles of atoms via projective measurements, the interaction with the vacuum is responsible for both the generation of the signal that is detected and the spin depolarization or decoherence. In consequence, one has to usually work in a regime where the information aquisition via detection is sufficiently slow (weak measurement regime) such as not to strongly disturb the system. We propose here a four-wave mixing scheme where, owing to the pumping of the atomic system into a dark state, the polarization of the ensemble is not critically affected by spontaneous emission, thus allowing one to work in a strong measurement regime

    Enhanced collective Purcell effect of coupled quantum emitter systems

    Full text link
    Cavity-embedded quantum emitters show strong modifications of free space radiation properties such as an enhanced decay known as the Purcell effect. The central parameter is the cooperativity CC, the ratio of the square of the coherent cavity coupling strength over the product of cavity and emitter decay rates. For a single emitter, CC is independent of the transition dipole moment and dictated by geometric cavity properties such as finesse and mode waist. In a recent work [Phys. Rev. Lett. 119, 093601 (2017)] we have shown that collective excitations in ensembles of dipole-dipole coupled quantum emitters show a disentanglement between the coherent coupling to the cavity mode and spontaneous free space decay. This leads to a strong enhancement of the cavity cooperativity around certain collective subradiant antiresonances. Here, we present a quantum Langevin equations approach aimed at providing results beyond the classical coupled dipoles model. We show that the subradiantly enhanced cooperativity imprints its effects onto the cavity output field quantum correlations while also strongly increasing the cavity-emitter system's collective Kerr nonlinear effect

    Transmissive optomechanical platforms with engineered spatial defects

    Full text link
    We investigate the optomechanical photon-phonon coupling of a single light mode propagating through an array of vibrating mechanical elements. As recently shown for the particular case of a periodic array of membranes embedded in a high-finesse optical cavity [A. Xuereb, C. Genes and A. Dantan, Phys. Rev. Lett., \textbf{109}, 223601, (2012)], the intracavity linear optomechanical coupling can be considerably enhanced over the single element value in the so-called \textit{transmissive regime}, where for motionless membranes the whole system is transparent to light. Here, we extend these investigations to quasi-periodic arrays in the presence of engineered spatial defects in the membrane positions. In particular we show that the localization of light modes induced by the defect combined with the access of the transmissive regime window can lead to additional enhancement of the strength of both linear and quadratic optomechanical couplings
    corecore