4 research outputs found

    Applying Proper Orthogonal Decomposition to Parabolic Equations: A Reduced Order Numerical Approach

    Get PDF
    In this paper we present a low-order numerical scheme developed using the Proper Orthogonal (POD) method to address non-homogeneous parabolic equations in both one and two dimensions. The proposed schemes leverage the POD technique to reduce the computational complexity associated with solving these equations while maintaining accuracy. By employing POD, the high-dimensional problem is approximated by a reduced set of models, allowing for a more efficient representation of the system dynamics. The application of this method to non-homogenous parabolic equations offers a promising approach for enhancing the computational efficiency of simulations in diverse fields, such as fluid dynamics, heat conduction, and reaction-diffusion processes. The presented numerical scheme demonstrates its efficacy in achieving accurate results with significantly reduced computational costs, making it a valuable tool for applications demanding efficient solutions to non-homogeneous parabolic equations in one and two dimensions

    Structure-preserving integrators for dissipative systems based on reversible-irreversible splitting

    Get PDF
    We study the optimal design of numerical integrators for dissipative systems, for which there exists an underlying thermodynamic structure known as GENERIC (general equation for the nonequilibrium reversible-irreversible coupling). We present a frame-work to construct structure-preserving integrators by splitting the system into reversible and irreversible dynamics. The reversible part, which is often degenerate and reduces to a Hamiltonian form on its symplectic leaves, is solved by using a symplectic method (e.g., Verlet) with degenerate variables being left unchanged, for which an associated modified Hamiltonian (and subsequently a modified energy) in the form of a series expansion can be obtained by using backward error analysis. The modified energy is then used to construct a modified friction matrix associated with the irreversible part in such a way that a modified degeneracy condition is satisfied. The modified irreversible dynamics can be further solved by an explicit midpoint method if not exactly solvable. Our findings are verified by various numerical experiments, demonstrating the superiority of structure-preserving integrators over alternative schemes in terms of not only the accuracy control of both energy conservation and entropy production but also the preservation of the conformal symplectic structure in the case of linearly damped systems
    corecore