19,017 research outputs found

    MedGAN: Medical Image Translation using GANs

    Full text link
    Image-to-image translation is considered a new frontier in the field of medical image analysis, with numerous potential applications. However, a large portion of recent approaches offers individualized solutions based on specialized task-specific architectures or require refinement through non-end-to-end training. In this paper, we propose a new framework, named MedGAN, for medical image-to-image translation which operates on the image level in an end-to-end manner. MedGAN builds upon recent advances in the field of generative adversarial networks (GANs) by merging the adversarial framework with a new combination of non-adversarial losses. We utilize a discriminator network as a trainable feature extractor which penalizes the discrepancy between the translated medical images and the desired modalities. Moreover, style-transfer losses are utilized to match the textures and fine-structures of the desired target images to the translated images. Additionally, we present a new generator architecture, titled CasNet, which enhances the sharpness of the translated medical outputs through progressive refinement via encoder-decoder pairs. Without any application-specific modifications, we apply MedGAN on three different tasks: PET-CT translation, correction of MR motion artefacts and PET image denoising. Perceptual analysis by radiologists and quantitative evaluations illustrate that the MedGAN outperforms other existing translation approaches.Comment: 16 pages, 8 figure

    Generative Adversarial Networks for Data Augmentation

    Full text link
    One way to expand the available dataset for training AI models in the medical field is through the use of Generative Adversarial Networks (GANs) for data augmentation. GANs work by employing a generator network to create new data samples that are then assessed by a discriminator network to determine their similarity to real samples. The discriminator network is taught to differentiate between actual and synthetic samples, while the generator system is trained to generate data that closely resemble real ones. The process is repeated until the generator network can produce synthetic data that is indistinguishable from genuine data. GANs have been utilized in medical image analysis for various tasks, including data augmentation, image creation, and domain adaptation. They can generate synthetic samples that can be used to increase the available dataset, especially in cases where obtaining large amounts of genuine data is difficult or unethical. However, it is essential to note that the use of GANs in medical imaging is still an active area of research to ensure that the produced images are of high quality and suitable for use in clinical settings.Comment: 13 pages, 6 figures, 1 table; Acceptance of the chapter for the Springer book "Data-driven approaches to medical imaging

    A survey on generative adversarial networks for imbalance problems in computer vision tasks

    Get PDF
    Any computer vision application development starts off by acquiring images and data, then preprocessing and pattern recognition steps to perform a task. When the acquired images are highly imbalanced and not adequate, the desired task may not be achievable. Unfortunately, the occurrence of imbalance problems in acquired image datasets in certain complex real-world problems such as anomaly detection, emotion recognition, medical image analysis, fraud detection, metallic surface defect detection, disaster prediction, etc., are inevitable. The performance of computer vision algorithms can significantly deteriorate when the training dataset is imbalanced. In recent years, Generative Adversarial Neural Networks (GANs) have gained immense attention by researchers across a variety of application domains due to their capability to model complex real-world image data. It is particularly important that GANs can not only be used to generate synthetic images, but also its fascinating adversarial learning idea showed good potential in restoring balance in imbalanced datasets. In this paper, we examine the most recent developments of GANs based techniques for addressing imbalance problems in image data. The real-world challenges and implementations of synthetic image generation based on GANs are extensively covered in this survey. Our survey first introduces various imbalance problems in computer vision tasks and its existing solutions, and then examines key concepts such as deep generative image models and GANs. After that, we propose a taxonomy to summarize GANs based techniques for addressing imbalance problems in computer vision tasks into three major categories: 1. Image level imbalances in classification, 2. object level imbalances in object detection and 3. pixel level imbalances in segmentation tasks. We elaborate the imbalance problems of each group, and provide GANs based solutions in each group. Readers will understand how GANs based techniques can handle the problem of imbalances and boost performance of the computer vision algorithms

    TOWARDS LONG-TERM IMPACT OF DEEP LEARNING SYSTEMS IN MEDICAL IMAGING

    Get PDF
    Deep learning has driven AI\u27s rapid growth in recent years, especially in the medical domain, where deep CNNs are the state-of-the-art for image recognition and classification. However, training them from scratch is challenging due to the lack of data and high computational requirements. Transfer Learning (TL) is an effective approach for limited training data, and TL integrated with GANs has improved image analysis models. It was unclear how much impact big data-driven Deep Learning systems had on adoption and acceptance in real-world healthcare. Specifically, the effectiveness of recently developed DL systems as scalable and generalizable AI applications remained an open question. Accordingly, the main objective of this research work is to assess the effectiveness of TL-GAN systems on broad adoption. This study explored the combination of transfer learning and generative adversarial networks (GANs) in medical imaging by conducting a systematic literature review. In addition, the scalability dimension of these systems was evaluated by examining the dynamics of GAN-augmented datasets and the accuracy achieved on target datasets. Finally, the generalization capabilities of the combination of transfer learning and GANs were evaluated. The study added to the current literature on TL and GANs in medical imaging, specifically in image synthesis and computational efficiency. Two strategies for combining TL and GANs were identified and summarized. The study also examined the impact of artificially augmented training datasets on the Fine-Tuning layer, finding that larger datasets resulted in more parameters being trained for optimal performance. Additionally, the study investigated the effect of synthetic dataset size on classification accuracy in TL settings, concluding that target validation accuracy stabilized as the dataset size increased. Furthermore, the study explored the generalizability of the models trained on GAN-augmented datasets and found that pre-trained models exhibited good performance when applied to various target datasets, indicating a high degree of generalizability in the models

    Evaluating the feasibility of using Generative Models to generate Chest X-Ray Data

    Full text link
    In this paper, we explore the feasibility of using generative models, specifically Progressive Growing GANs (PG-GANs) and Stable Diffusion fine-tuning, to generate synthetic chest X-ray images for medical diagnosis purposes. Due to ethical concerns, obtaining sufficient medical data for machine learning is a challenge, which our approach aims to address by synthesising more data. We utilised the Chest X-ray 14 dataset for our experiments and evaluated the performance of our models through qualitative and quantitative analysis. Our results show that the generated images are visually convincing and can be used to improve the accuracy of classification models. However, further work is needed to address issues such as overfitting and the limited availability of real data for training and testing. The potential of our approach to contribute to more effective medical diagnosis through deep learning is promising, and we believe that continued advancements in image generation technology will lead to even more promising results in the future

    Anomaly Detection for imbalanced datasets with Deep Generative Models

    Get PDF
    Many important data analysis applications present with severely imbalanced datasets with respect to the target variable. A typical example is medical image analysis, where positive samples are scarce, while performance is commonly estimated against the correct detection of these positive examples. We approach this challenge by formulating the problem as anomaly detection with generative models. We train a generative model without supervision on the `negative' (common) datapoints and use this model to estimate the likelihood of unseen data. A successful model allows us to detect the `positive' case as low likelihood datapoints. In this position paper, we present the use of state-of-the-art deep generative models (GAN and VAE) for the estimation of a likelihood of the data. Our results show that on the one hand both GANs and VAEs are able to separate the `positive' and `negative' samples in the MNIST case. On the other hand, for the NLST case, neither GANs nor VAEs were able to capture the complexity of the data and discriminate anomalies at the level that this task requires. These results show that even though there are a number of successes presented in the literature for using generative models in similar applications, there remain further challenges for broad successful implementation.Comment: 15 pages, 13 figures, accepted by Benelearn 2018 conferenc
    corecore