43,703 research outputs found

    Clinically applicable GABA receptor positive allosteric modulators promote ß-cell replication.

    Get PDF
    A key goal of diabetes research is to develop treatments to safely promote human ß-cell replication. It has recently become appreciated that activation of γ-aminobutyric acid receptors (GABA-Rs) on ß-cells can promote their survival and replication. A number of positive allosteric modulators (PAMs) that enhance GABA's actions on neuronal GABAA-Rs are in clinical use. Repurposing these GABAA-R PAMs to help treat diabetes is theoretically appealing because of their safety and potential to enhance the ability of GABA, secreted from ß-cells, or exogenously administered, to promote ß-cell replication and survival. Here, we show that clinically applicable GABAA-R PAMs can increase significantly INS-1 ß-cell replication, which is enhanced by exogenous GABA application. Furthermore, a GABAA-R PAM promoted human islet cell replication in vitro. This effect was abrogated by a GABAA-R antagonist. The combination of a PAM and low levels of exogenous GABA further increased human islet cell replication. These findings suggest that PAMs may potentiate the actions of GABA secreted by islet ß-cells on GABAA-Rs and provide a new class of drugs for diabetes treatment. Finally, our findings may explain a past clinical observation of a GABAA-R PAM reducing HbA1c levels in diabetic patients

    Pathophysiological role of extrasynaptic GABAA receptors in typical absence epilepsy

    Get PDF
    GABA is the principal inhibitory neurotransmitter in the mammalian CNS. It acts via two classes of receptors, the GABAA, a ligand gated ion channel (ionotropic receptor) and the metabotropic G-protein coupled GABAB receptor. While synaptic GABAA receptors underlie classical ‘phasic’ GABAA receptor-mediated inhibition, extrasynaptic GABAA receptors (eGABAAR) mediate a new form of inhibition, termed ‘tonic’ GABAA inhibition. The subunit composition of eGABAARs differs from those present at the synapse, resulting in pharmacologically and functionally distinct properties. In this mini-review the findings presented at the 2nd Neuroscience Day meeting held last July in Malta will be summarised. Particular emphasis will be given to the important pathophysiological role of eGABAAR within thalamocortical circuits as a major player in nonconvulsive absence epilepsy. The new findings presented at the conference suggest that enhanced tonic inhibition is a common cause of seizures in several animal models of absence epilepsy and may provide new targets for therapeutic intervention.peer-reviewe

    STRUCTURAL AND FUNCTIONAL STUDIES ON GABAA RECEPTOR SUBTYPES: A COMPUTATIONAL PATHWAY FOR DESIGNING NOVEL NON-SEDATIVE MODULATORS

    Get PDF
    In this stressful era, maintaining the proper balance of neuronal excitation and inhibition remains the central demand of human brain. To harmonize the optimal brain functioning, γ-Amino Butyric Acid type A Receptors (GABAA-Rs) play a vital role by mediating the fast inhibitory neurotransmissions. These GABA-gated chloride ion channels maintain the delicate balance between neuronal excitation and inhibition. The formation of GABAA-R uses repertoire of 19 different subunit subtypes α1-6, β1-3, γ1-3, δ, ε, π, θ and ρ1-3, out of which two α1, two β2 and one γ2 form the most abundant native GABAA-R structure. In the absence of heteropentameric human GABAA-R structure the structural biology remains yet to be fully explored. Manipulation of GABAergic transmission is aimed to provide the benefits in the treatment of a host of neurological and psychiatric disorders. We utilised the existing experimental data and carried out a computational study to obtain the structural details of different GABAA-Rs. This computational pathway sequentially proceeds for : i) obtaining the different GABAA-R states and subtypes; ii) understanding the logic of their existence and correlating structure-function details for each of them; iii) unravelling the complete journey of molecular events that fine tune the state dependent channel transitions in normal conditions including ligand unoccupied closed, open, uncapped receptive states and GABA occupied singly and doubly bound states; iv) understanding the nature of cross-talk between two orthosteric sites and third allosteric BZD-site when we brought it into consideration; v) identifying a set of governing rules/markers forming the structural basis of selective modulation for BZD-site agonists at α1- and α2-GABAA-R subtypes. Accordingly, to fulfil the deliberate demand of clinically efficacious α2-selective non-sedative modulator/s the underlying logic is systematically demarcated under single platform. The crux from the early stage modulatory pathways of subtype selective actions provides newer avenues to guide the designing of novel modulator/s having desired pharmacological endpoints in diseased states. Overall, this channelled study is bound to track the structure-function-novel drug designing, based on the understanding of GABAA-R modulatory pathways

    GABA increases electrical excitability in a subset of human unmyelinated peripheral axons

    Get PDF
    A proportion of small diameter primary sensory neurones innervating human skin are chemosensitive. They respond in a receptor dependent manner to chemical mediators of inflammation as well as naturally occurring algogens, thermogens and pruritogens. The neurotransmitter GABA is interesting in this respect because in animal models of neuropathic pain GABA pre-synaptically regulates nociceptive input to the spinal cord. However, the effect of GABA on human peripheral unmyelinated axons has not been established

    Serotonin drives a novel GABAergic synaptic current recorded in rat cerebellar purkinje cells: a lugaro cell to Purkinje cell synapse

    Get PDF
    We recorded a novel fast GABAergic synaptic current in cerebellar Purkinje cells in rat brain slices using patch-clamp techniques. Because of a relatively low sensitivity to bicuculline, these currents can be recorded under conditions in which basket and stellate cell inputs are blocked. The observations that the novel synaptic currents occur spontaneously only in the presence of serotonin, and the specific limited positions in the slice from which they can be electrically evoked, suggest that the presynaptic cell is the Lugaro cell. Cell-attached recordings confirm that the Lugaro cell is the only interneuron in the cerebellar cortex with firing behavior consistent with the spontaneous activity recorded in Purkinje cells. The input shows a strong presynaptic modulation mediated by GABAA receptors, resulting in a dynamic range from almost 0 to >90% release probability. Modeling GABAA receptor responses to different GABA transients suggests that the relatively low sensitivity of the synaptic currents to bicuculline, compared with the higher affinity GABAA receptor antagonist SR-95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl) pyridazinium), is attributable to an unusually long GABA dwell time and/or high GABA concentration in the synaptic cleft. The significance of this novel input is discussed in relation to other GABAergic synapses impinging on Purkinje cells. We suggest that the release of GABA onto Purkinje cells from Lugaro cells would primarily occur during motor activity under conditions in which the activity of basket and stellate cells might be inhibited

    Interaction of hypothalamic GABA\u3csub\u3eA\u3c/sub\u3e and excitatory amino acid receptors controlling heart rate in rats

    Get PDF
    We have previously shown that microinjection of drugs that impair gamma-aminobutyric acid (GABA)-mediated synaptic inhibition into the dorsomedial hypothalamus (DMH) of rats generates cardiovascular and behavioral changes that mimic the response to stress. The purpose of this study was to examine the role of excitatory amino acid (EAA) receptors in the DMH in generating the cardiovascular changes caused by withdrawal of local GABAergic inhibition in urethan-anesthetized rats. Local treatment of the DMH with the nonselective EAA antagonist kynurenic acid blocked or reversed the increases in heart rate and blood pressure caused by microinjection of the GABAA antagonists bicuculline methiodide (BMI) or picrotoxin into the same region. Conversely, similar injection of xanthurenic acid, a structural analogue of kynurenic acid without significant effects on EAA receptors, did not significantly alter the cardiovascular changes produced by either GABAA antagonist. The tachycardic effects of BMI were also attenuated by injection of either the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoic acid or the non-NMDA EAA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. When the two EAA receptor antagonists were combined, their effects to suppress the BMI-induced tachycardia were additive. These findings suggest that the cardiovascular effects caused by blockade of GABAergic inhibition in the DMH of the rat are dependent on activation of local NMDA and non-NMDA EAA receptors

    Hydrocarbon molar water solubility predicts NMDA vs. GABAA receptor modulation.

    Get PDF
    BackgroundMany anesthetics modulate 3-transmembrane (such as NMDA) and 4-transmembrane (such as GABAA) receptors. Clinical and experimental anesthetics exhibiting receptor family specificity often have low water solubility. We hypothesized that the molar water solubility of a hydrocarbon could be used to predict receptor modulation in vitro.MethodsGABAA (α1β2γ2s) or NMDA (NR1/NR2A) receptors were expressed in oocytes and studied using standard two-electrode voltage clamp techniques. Hydrocarbons from 14 different organic functional groups were studied at saturated concentrations, and compounds within each group differed only by the carbon number at the ω-position or within a saturated ring. An effect on GABAA or NMDA receptors was defined as a 10% or greater reversible current change from baseline that was statistically different from zero.ResultsHydrocarbon moieties potentiated GABAA and inhibited NMDA receptor currents with at least some members from each functional group modulating both receptor types. A water solubility cut-off for NMDA receptors occurred at 1.1 mM with a 95% CI = 0.45 to 2.8 mM. NMDA receptor cut-off effects were not well correlated with hydrocarbon chain length or molecular volume. No cut-off was observed for GABAA receptors within the solubility range of hydrocarbons studied.ConclusionsHydrocarbon modulation of NMDA receptor function exhibits a molar water solubility cut-off. Differences between unrelated receptor cut-off values suggest that the number, affinity, or efficacy of protein-hydrocarbon interactions at these sites likely differ
    corecore