247,597 research outputs found

    Improving Local Search for Fuzzy Scheduling Problems

    Full text link
    The integration of fuzzy set theory and fuzzy logic into scheduling is a rather new aspect with growing importance for manufacturing applications, resulting in various unsolved aspects. In the current paper, we investigate an improved local search technique for fuzzy scheduling problems with fitness plateaus, using a multi criteria formulation of the problem. We especially address the problem of changing job priorities over time as studied at the Sherwood Press Ltd, a Nottingham based printing company, who is a collaborator on the project

    The World of Combinatorial Fuzzy Problems and the Efficiency of Fuzzy Approximation Algorithms

    Full text link
    We re-examine a practical aspect of combinatorial fuzzy problems of various types, including search, counting, optimization, and decision problems. We are focused only on those fuzzy problems that take series of fuzzy input objects and produce fuzzy values. To solve such problems efficiently, we design fast fuzzy algorithms, which are modeled by polynomial-time deterministic fuzzy Turing machines equipped with read-only auxiliary tapes and write-only output tapes and also modeled by polynomial-size fuzzy circuits composed of fuzzy gates. We also introduce fuzzy proof verification systems to model the fuzzification of nondeterminism. Those models help us identify four complexity classes: Fuzzy-FPA of fuzzy functions, Fuzzy-PA and Fuzzy-NPA of fuzzy decision problems, and Fuzzy-NPAO of fuzzy optimization problems. Based on a relative approximation scheme targeting fuzzy membership degree, we formulate two notions of "reducibility" in order to compare the computational complexity of two fuzzy problems. These reducibility notions make it possible to locate the most difficult fuzzy problems in Fuzzy-NPA and in Fuzzy-NPAO.Comment: A4, 10pt, 10 pages. This extended abstract already appeared in the Proceedings of the Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS 2014) and 15th International Symposium on Advanced Intelligent Systems (ISIS 2014), December 3-6, 2014, Institute of Electrical and Electronics Engineers (IEEE), pp. 29-35, 201

    Fuzzy ART Choice Functions

    Full text link
    Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP networks synthesize fuzzy logic and ART by exploiting the formal similarity between tile computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic intersection (∩) with the fuzzy intersection(∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric theory in which the fuzzy intersection and the fuzzy union (∨), or component-wise maximum, play complementary roles. A geometric interpretation of fuzzy ART represents each category as a box that increases in size as weights decrease. This paper analyzes fuzzy ART models that employ various choice functions for category selection. One such function minimizes total weight change during learning. Benchmark simulations compare peformance of fuzzy ARTMAP systems that use different choice functions.Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100

    Global Optimization strategies for two-mode clustering

    Get PDF
    Two-mode clustering is a relatively new form of clustering that clusters both rows and columns of a data matrix. To do so, a criterion similar to k-means is optimized. However, it is still unclear which optimization method should be used to perform two-mode clustering, as various methods may lead to non-global optima. This paper reviews and compares several optimization methods for two-mode clustering. Several known algorithms are discussed and a new, fuzzy algorithm is introduced. The meta-heuristics Multistart, Simulated Annealing, and Tabu Search are used in combination with these algorithms. The new, fuzzy algorithm is based on the fuzzy c-means algorithm of Bezdek (1981) and the Fuzzy Steps approach to avoid local minima of Heiser and Groenen (1997) and Groenen and Jajuga (2001). The performance of all methods is compared in a large simulation study. It is found that using a Multistart meta-heuristic in combination with a two-mode k-means algorithm or the fuzzy algorithm often gives the best results. Finally, an empirical data set is used to give a practical example of two-mode clustering.algorithms;fuzzy clustering;multistart;simulated annealing;simulation;tabu search;two-mode clustering

    Fuzzy ART

    Full text link
    Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP synthesize fuzzy logic and ART networks by exploiting the formal similarity between the computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic: intersection (∩) with the fuzzy intersection (∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric: theory in which the fuzzy inter:>ec:tion and the fuzzy union (∨), or component-wise maximum, play complementary roles. Complement coding preserves individual feature amplitudes while normalizing the input vector, and prevents a potential category proliferation problem. Adaptive weights :otart equal to one and can only decrease in time. A geometric interpretation of fuzzy AHT represents each category as a box that increases in size as weights decrease. A matching criterion controls search, determining how close an input and a learned representation must be for a category to accept the input as a new exemplar. A vigilance parameter (p) sets the matching criterion and determines how finely or coarsely an ART system will partition inputs. High vigilance creates fine categories, represented by small boxes. Learning stops when boxes cover the input space. With fast learning, fixed vigilance, and an arbitrary input set, learning stabilizes after just one presentation of each input. A fast-commit slow-recode option allows rapid learning of rare events yet buffers memories against recoding by noisy inputs. Fuzzy ARTMAP unites two fuzzy ART networks to solve supervised learning and prediction problems. A Minimax Learning Rule controls ARTMAP category structure, conjointly minimizing predictive error and maximizing code compression. Low vigilance maximizes compression but may therefore cause very different inputs to make the same prediction. When this coarse grouping strategy causes a predictive error, an internal match tracking control process increases vigilance just enough to correct the error. ARTMAP automatically constructs a minimal number of recognition categories, or "hidden units," to meet accuracy criteria. An ARTMAP voting strategy improves prediction by training the system several times using different orderings of the input set. Voting assigns confidence estimates to competing predictions given small, noisy, or incomplete training sets. ARPA benchmark simulations illustrate fuzzy ARTMAP dynamics. The chapter also compares fuzzy ARTMAP to Salzberg's Nested Generalized Exemplar (NGE) and to Simpson's Fuzzy Min-Max Classifier (FMMC); and concludes with a summary of ART and ARTMAP applications.Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100
    corecore