247,597 research outputs found
Improving Local Search for Fuzzy Scheduling Problems
The integration of fuzzy set theory and fuzzy logic into scheduling is a
rather new aspect with growing importance for manufacturing applications,
resulting in various unsolved aspects. In the current paper, we investigate an
improved local search technique for fuzzy scheduling problems with fitness
plateaus, using a multi criteria formulation of the problem. We especially
address the problem of changing job priorities over time as studied at the
Sherwood Press Ltd, a Nottingham based printing company, who is a collaborator
on the project
The World of Combinatorial Fuzzy Problems and the Efficiency of Fuzzy Approximation Algorithms
We re-examine a practical aspect of combinatorial fuzzy problems of various
types, including search, counting, optimization, and decision problems. We are
focused only on those fuzzy problems that take series of fuzzy input objects
and produce fuzzy values. To solve such problems efficiently, we design fast
fuzzy algorithms, which are modeled by polynomial-time deterministic fuzzy
Turing machines equipped with read-only auxiliary tapes and write-only output
tapes and also modeled by polynomial-size fuzzy circuits composed of fuzzy
gates. We also introduce fuzzy proof verification systems to model the
fuzzification of nondeterminism. Those models help us identify four complexity
classes: Fuzzy-FPA of fuzzy functions, Fuzzy-PA and Fuzzy-NPA of fuzzy decision
problems, and Fuzzy-NPAO of fuzzy optimization problems. Based on a relative
approximation scheme targeting fuzzy membership degree, we formulate two
notions of "reducibility" in order to compare the computational complexity of
two fuzzy problems. These reducibility notions make it possible to locate the
most difficult fuzzy problems in Fuzzy-NPA and in Fuzzy-NPAO.Comment: A4, 10pt, 10 pages. This extended abstract already appeared in the
Proceedings of the Joint 7th International Conference on Soft Computing and
Intelligent Systems (SCIS 2014) and 15th International Symposium on Advanced
Intelligent Systems (ISIS 2014), December 3-6, 2014, Institute of Electrical
and Electronics Engineers (IEEE), pp. 29-35, 201
Fuzzy ART Choice Functions
Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP networks synthesize fuzzy logic and ART by exploiting the formal similarity between tile computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic intersection (∩) with the fuzzy intersection(∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric theory in which the fuzzy intersection and the fuzzy union (∨), or component-wise maximum, play complementary roles. A geometric interpretation of fuzzy ART represents each category as a box that increases in size as weights decrease. This paper analyzes fuzzy ART models that employ various choice functions for category selection. One such function minimizes total weight change during learning. Benchmark simulations compare peformance of fuzzy ARTMAP systems that use different choice functions.Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100
Global Optimization strategies for two-mode clustering
Two-mode clustering is a relatively new form of clustering that clusters both rows and columns of a data matrix. To do so, a criterion similar to k-means is optimized. However, it is still unclear which optimization method should be used to perform two-mode clustering, as various methods may lead to non-global optima. This paper reviews and compares several optimization methods for two-mode clustering. Several known algorithms are discussed and a new, fuzzy algorithm is introduced. The meta-heuristics Multistart, Simulated Annealing, and Tabu Search are used in combination with these algorithms. The new, fuzzy algorithm is based on the fuzzy c-means algorithm of Bezdek (1981) and the Fuzzy Steps approach to avoid local minima of Heiser and Groenen (1997) and Groenen and Jajuga (2001). The performance of all methods is compared in a large simulation study. It is found that using a Multistart meta-heuristic in combination with a two-mode k-means algorithm or the fuzzy algorithm often gives the best results. Finally, an empirical data set is used to give a practical example of two-mode clustering.algorithms;fuzzy clustering;multistart;simulated annealing;simulation;tabu search;two-mode clustering
Fuzzy ART
Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP synthesize fuzzy logic and ART networks by exploiting the formal similarity between the computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic: intersection (∩) with the fuzzy intersection (∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric: theory in which the fuzzy inter:>ec:tion and the fuzzy union (∨), or component-wise maximum, play complementary roles. Complement coding preserves individual feature amplitudes while normalizing the input vector, and prevents a potential category proliferation problem. Adaptive weights :otart equal to one and can only decrease in time. A geometric interpretation of fuzzy AHT represents each category as a box that increases in size as weights decrease. A matching criterion controls search, determining how close an input and a learned representation must be for a category to accept the input as a new exemplar. A vigilance parameter (p) sets the matching criterion and determines how finely or coarsely an ART system will partition inputs. High vigilance creates fine categories, represented by small boxes. Learning stops when boxes cover the input space. With fast learning, fixed vigilance, and an arbitrary input set, learning stabilizes after just one presentation of each input. A fast-commit slow-recode option allows rapid learning of rare events yet buffers memories against recoding by noisy inputs.
Fuzzy ARTMAP unites two fuzzy ART networks to solve supervised learning and prediction problems. A Minimax Learning Rule controls ARTMAP category structure, conjointly minimizing predictive error and maximizing code compression. Low vigilance maximizes compression but may therefore cause very different inputs to make the same prediction. When this coarse grouping strategy causes a predictive error, an internal match tracking control process increases vigilance just enough to correct the error. ARTMAP automatically constructs a minimal number of recognition categories, or "hidden units," to meet accuracy criteria. An ARTMAP voting strategy improves prediction by training the system several times using different orderings of the input set. Voting assigns confidence estimates to competing predictions given small, noisy, or incomplete training sets. ARPA benchmark simulations illustrate fuzzy ARTMAP dynamics. The chapter also compares fuzzy ARTMAP to Salzberg's Nested Generalized Exemplar (NGE) and to Simpson's Fuzzy Min-Max Classifier (FMMC); and concludes with a summary of ART and ARTMAP applications.Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100
- …
