2,360 research outputs found

    On the Potential of Generic Modeling for VANET Data Aggregation Protocols

    Get PDF
    In-network data aggregation is a promising communication mechanism to reduce bandwidth requirements of applications in vehicular ad-hoc networks (VANETs). Many aggregation schemes have been proposed, often with varying features. Most aggregation schemes are tailored to specific application scenarios and for specific aggregation operations. Comparative evaluation of different aggregation schemes is therefore difficult. An application centric view of aggregation does also not tap into the potential of cross application aggregation. Generic modeling may help to unlock this potential. We outline a generic modeling approach to enable improved comparability of aggregation schemes and facilitate joint optimization for different applications of aggregation schemes for VANETs. This work outlines the requirements and general concept of a generic modeling approach and identifies open challenges

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Evolutionary Computation Applied to Urban Traffic Optimization

    Get PDF
    At the present time, many sings seem to indicate that we live a global energy and environmental crisis. The scientific community argues that the global warming process is, at least in some degree, a consequence of modern societies unsustainable development. A key area in that situation is the citizens mobility. World economies seem to require fast and efficient transportation infrastructures for a significant fraction of the population. The non-stopping overload process that traffic networks are suffering calls for new solutions. In the vast majority of cases it is not viable to extend that infrastructures due to costs, lack of available space, and environmental impacts. Thus, traffic departments all around the world are very interested in optimizing the existing infrastructures to obtain the very best service they can provide. In the last decade many initiatives have been developed to give the traffic network new management facilities for its better exploitation. They are grouped in the so called Intelligent Transportation Systems. Examples of these approaches are the Advanced Traveler Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS). Most of them provide drivers or traffic engineers the current traffic real/simulated situation or traffic forecasts. They may even suggest actions to improve the traffic flow. To do so, researchers have done a lot of work improving traffic simulations, specially through the development of accurate microscopic simulators. In the last decades the application of that family of simulators was restricted to small test cases due to its high computing requirements. Currently, the availability of cheap faster computers has changed this situation. Some famous microsimulators are MITSIM(Yang, Q., 1997), INTEGRATION (Rakha, H., et al., 1998), AIMSUN2 (Barcelo, J., et al., 1996), TRANSIMS (Nagel, K. & Barrett, C., 1997), etc. They will be briefly explained in the following section. Although traffic research is mainly targeted at obtaining accurate simulations there are few groups focused at the optimization or improvement of traffic in an automatic manner â not dependent on traffic engineers experience and âartâ. O pe n A cc es s D at ab as e w w w .ite ch on lin e. co

    Computational intelligence based architecture for cognitive agents

    Get PDF
    AbstractWe discuss some limitations of reflexive agents to motivate the need to develop cognitive agents and propose a hierarchical, layered, architecture for cognitive agents. Our examples often involve the discussion of cognitive agents in highway traffic models. A cognitive agent is an agent capable of performing cognitive acts, i.e. a sequence of the following activities: “Perceiving” information in the environment and provided by other agents, “Reasoning” about this information using existing knowledge, “Judging” the obtained information using existing knowledge, “Responding” to other cognitive agents or to the external environment, as it may be required, and “Learning”, i.e. changing (and, hopefully augmenting) the existing knowledge if the newly acquired information allows it. We describe how computational intelligence techniques (e.g., fuzzy logic, neural networks, genetic algorithms, etc) allow mimicking to a certain extent the cognitive acts performed by human beings. The order with which the cognitive actions take place is important and so is the order with which the various computational intelligence techniques are applied. We believe that a hierarchical layered model should be defined for the generic cognitive agents in a style akin to the hierarchical OSI 7 layer model used in data communication. We outline in broad sense such a reference model

    A bi-level model of dynamic traffic signal control with continuum approximation

    Get PDF
    This paper proposes a bi-level model for traffic network signal control, which is formulated as a dynamic Stackelberg game and solved as a mathematical program with equilibrium constraints (MPEC). The lower-level problem is a dynamic user equilibrium (DUE) with embedded dynamic network loading (DNL) sub-problem based on the LWR model (Lighthill and Whitham, 1955; Richards, 1956). The upper-level decision variables are (time-varying) signal green splits with the objective of minimizing network-wide travel cost. Unlike most existing literature which mainly use an on-and-off (binary) representation of the signal controls, we employ a continuum signal model recently proposed and analyzed in Han et al. (2014), which aims at describing and predicting the aggregate behavior that exists at signalized intersections without relying on distinct signal phases. Advantages of this continuum signal model include fewer integer variables, less restrictive constraints on the time steps, and higher decision resolution. It simplifies the modeling representation of large-scale urban traffic networks with the benefit of improved computational efficiency in simulation or optimization. We present, for the LWR-based DNL model that explicitly captures vehicle spillback, an in-depth study on the implementation of the continuum signal model, as its approximation accuracy depends on a number of factors and may deteriorate greatly under certain conditions. The proposed MPEC is solved on two test networks with three metaheuristic methods. Parallel computing is employed to significantly accelerate the solution procedure

    Soft data mining, computational theory of perceptions, and rough-fuzzy approach

    Get PDF
    Data mining and knowledge discovery is described from pattern recognition point of view along with the relevance of soft computing. Key features of the computational theory of perceptions and its significance in pattern recognition and knowledge discovery problems are explained. Role of fuzzy-granulation (f-granulation) in machine and human intelligence, and its modeling through rough-fuzzy integration are discussed. Merits of fuzzy granular computation, in terms of performance and computation time, for the task of case generation in large scale case-based reasoning systems are illustrated through an example

    Soft data mining, computational theory of perceptions, and rough-fuzzy approach

    Get PDF
    • …
    corecore