213 research outputs found
Reinforcement Learning: A Survey
This paper surveys the field of reinforcement learning from a
computer-science perspective. It is written to be accessible to researchers
familiar with machine learning. Both the historical basis of the field and a
broad selection of current work are summarized. Reinforcement learning is the
problem faced by an agent that learns behavior through trial-and-error
interactions with a dynamic environment. The work described here has a
resemblance to work in psychology, but differs considerably in the details and
in the use of the word ``reinforcement.'' The paper discusses central issues of
reinforcement learning, including trading off exploration and exploitation,
establishing the foundations of the field via Markov decision theory, learning
from delayed reinforcement, constructing empirical models to accelerate
learning, making use of generalization and hierarchy, and coping with hidden
state. It concludes with a survey of some implemented systems and an assessment
of the practical utility of current methods for reinforcement learning.Comment: See http://www.jair.org/ for any accompanying file
AI Methods in Algorithmic Composition: A Comprehensive Survey
Algorithmic composition is the partial or total automation of the process of music composition
by using computers. Since the 1950s, different computational techniques related to
Artificial Intelligence have been used for algorithmic composition, including grammatical
representations, probabilistic methods, neural networks, symbolic rule-based systems, constraint
programming and evolutionary algorithms. This survey aims to be a comprehensive
account of research on algorithmic composition, presenting a thorough view of the field for
researchers in Artificial Intelligence.This study was partially supported by a grant for the MELOMICS project
(IPT-300000-2010-010) from the Spanish Ministerio de Ciencia e Innovación, and a grant for
the CAUCE project (TSI-090302-2011-8) from the Spanish Ministerio de Industria, Turismo
y Comercio. The first author was supported by a grant for the GENEX project (P09-TIC-
5123) from the Consejería de Innovación y Ciencia de Andalucía
Processing hidden Markov models using recurrent neural networks for biological applications
Philosophiae Doctor - PhDIn this thesis, we present a novel hybrid architecture by combining the most popular
sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov Models (HMMs). Though sequence recognition problems could be potentially modelled through well trained HMMs, they could not provide a reasonable solution to the complicated recognition problems. In contrast, the ability of RNNs to recognize the complex sequence recognition problems is known to be exceptionally good. It should be noted that in the past, methods for applying HMMs into RNNs have been developed by other researchers. However, to the best of our knowledge, no algorithm for processing HMMs through learning has been given. Taking advantage of the structural similarities of the architectural dynamics of the RNNs and HMMs, in this work we analyze the combination of these two systems into the hybrid architecture. To this end, the main objective of this study is to improve the sequence recognition/classi_cation performance by applying a hybrid neural/symbolic approach. In particular, trained HMMs are used as the initial symbolic domain theory and directly encoded into appropriate RNN architecture, meaning that the prior knowledge is processed through the training of RNNs. Proposed algorithm is then implemented on sample test beds and other real time biological applications
Discovering logical knowledge in non-symbolic domains
Deep learning and symbolic artificial intelligence remain the two main paradigms in Artificial Intelligence (AI), each presenting their own strengths and weaknesses. Artificial agents should integrate both of these aspects of AI in order to show general intelligence and solve complex problems in real-world scenarios; similarly to how humans use both the analytical left side and the intuitive right side of their brain in their lives. However, one of the main obstacles hindering this integration is the Symbol Grounding Problem [144], which is the capacity to map physical world observations to a set of symbols. In this thesis, we combine symbolic reasoning and deep learning in order to better represent and reason with abstract knowledge. In particular, we focus on solving non-symbolic-state Reinforcement Learning environments using a symbolic logical domain. We consider different configurations: (i) unknown knowledge of both the symbol grounding function and the symbolic logical domain, (ii) unknown knowledge of the symbol grounding function and prior knowledge of the domain, (iii) imperfect knowledge of the symbols grounding function and unknown knowledge of the domain. We develop algorithms and neural network architectures that are general enough to be applied to different kinds of environments, which we test on both continuous-state control problems and image-based environments. Specifically, we develop two kinds of architectures: one for Markovian RL tasks and one for non-Markovian RL domains. The first is based on model-based RL and representation learning, and is inspired by the substantial prior work in state abstraction for RL [115]. The second is mainly based on recurrent neural networks and continuous relaxations of temporal logic domains. In particular, the first approach extracts a symbolic STRIPS-like abstraction for control problems. For the second approach, we explore connections between recurrent neural networks and finite state machines, and we define Visual Reward Machines, an extension to non-symbolic domains of Reward Machines [27], which are a popular approach to non-Markovian RL tasks
Application of learning algorithms to traffic management in integrated services networks.
SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
- …
