3 research outputs found

    The Impact of Systematic Edits in History Slicing

    Full text link
    While extracting a subset of a commit history, specifying the necessary portion is a time-consuming task for developers. Several commit-based history slicing techniques have been proposed to identify dependencies between commits and to extract a related set of commits using a specific commit as a slicing criterion. However, the resulting subset of commits become large if commits for systematic edits whose changes do not depend on each other exist. We empirically investigated the impact of systematic edits on history slicing. In this study, commits in which systematic edits were detected are split between each file so that unnecessary dependencies between commits are eliminated. In several histories of open source systems, the size of history slices was reduced by 13.3-57.2% on average after splitting the commits for systematic edits.Comment: 5 pages, MSR 201

    Method-Level Bug Severity Prediction using Source Code Metrics and LLMs

    Full text link
    In the past couple of decades, significant research efforts are devoted to the prediction of software bugs. However, most existing work in this domain treats all bugs the same, which is not the case in practice. It is important for a defect prediction method to estimate the severity of the identified bugs so that the higher-severity ones get immediate attention. In this study, we investigate source code metrics, source code representation using large language models (LLMs), and their combination in predicting bug severity labels of two prominent datasets. We leverage several source metrics at method-level granularity to train eight different machine-learning models. Our results suggest that Decision Tree and Random Forest models outperform other models regarding our several evaluation metrics. We then use the pre-trained CodeBERT LLM to study the source code representations' effectiveness in predicting bug severity. CodeBERT finetuning improves the bug severity prediction results significantly in the range of 29%-140% for several evaluation metrics, compared to the best classic prediction model on source code metric. Finally, we integrate source code metrics into CodeBERT as an additional input, using our two proposed architectures, which both enhance the CodeBERT model effectiveness
    corecore