145 research outputs found

    Cryptanalysis of an online/offline certificateless signature scheme for Internet of Health Things

    Get PDF
    Recently, Khan et al. [An online-offline certificateless signature scheme for internet of health things,” Journal of Healthcare Engineering, vol. 2020] presented a new certificateless offline/online signature scheme for Internet of Health Things (IoHT) to fulfill the authenticity requirements of the resource-constrained environment of (IoHT) devices. The authors claimed that the newly proposed scheme is formally secured against Type-I adversary under the Random Oracle Model (ROM). Unfortunately, their scheme is insecure against adaptive chosen message attacks. It is demonstrated that an adversary can forge a valid signature on a message by replacing the public key. Furthermore, we performed a comparative analysis of the selective parameters including computation time, communication overhead, security, and formal proof by employing Evaluation based on Distance from Average Solution (EDAS). The analysis shows that the designed scheme of Khan et al. doesn’t have any sort of advantage over the previous schemes. Though, the authors utilized a lightweight hyperelliptic curve cryptosystem with a smaller key size of 80-bits. Finally, we give some suggestions on the construction of a concrete security scheme under ROM

    A Computationally Efficient Online/Offline Signature Scheme for Underwater Wireless Sensor Networks

    Get PDF
    Underwater wireless sensor networks (UWSNs) have emerged as the most widely used wireless network infrastructure in many applications. Sensing nodes are frequently deployed in hostile aquatic environments in order to collect data on resources that are severely limited in terms of transmission time and bandwidth. Since underwater information is very sensitive and unique, the authentication of users is very important to access the data and information. UWSNs have unique communication and computation needs that are not met by the existing digital signature techniques. As a result, a lightweight signature scheme is required to meet the communication and computa‑ tion requirements. In this research, we present a Certificateless Online/Offline Signature (COOS) mechanism for UWSNs. The proposed scheme is based on the concept of a hyperelliptic curves cryptosystem, which offers the same degree of security as RSA, bilinear pairing, and elliptic curve cryptosystems (ECC) but with a smaller key size. In addition, the proposed scheme was proven secure in the random oracle model under the hyperelliptic curve discrete logarithm problem. A se‑ curity analysis was also carried out, as well as comparisons with appropriate current online/offline signature schemes. The comparison demonstrated that the proposed scheme is superior to the exist‑ ing schemes in terms of both security and efficiency. Additionally, we also employed the fuzzy‑based Evaluation‑based Distance from Average Solutions (EDAS) technique to demonstrate the effective‑ ness of the proposed scheme.publishedVersio

    Blockchain-Based and Fuzzy Logic-Enabled False Data Discovery for the Intelligent Autonomous Vehicular System

    Full text link
    Since the beginning of this decade, several incidents report that false data injection attacks targeting intelligent connected vehicles cause huge industrial damage and loss of lives. Data Theft, Flooding, Fuzzing, Hijacking, Malware Spoofing and Advanced Persistent Threats have been immensely growing attack that leads to end-user conflict by abolishing trust on autonomous vehicle. Looking after those sensitive data that contributes to measure the localisation factors of the vehicle, conventional centralised techniques can be misused to update the legitimate vehicular status maliciously. As investigated, the existing centralized false data detection approach based on state and likelihood estimation has a reprehensible trade-off in terms of accuracy, trust, cost, and efficiency. Blockchain with Fuzzy-logic Intelligence has shown its potential to solve localisation issues, trust and false data detection challenges encountered by today's autonomous vehicular system. The proposed Blockchain-based fuzzy solution demonstrates a novel false data detection and reputation preservation technique. The illustrated proposed model filters false and anomalous data based on the vehicles' rules and behaviours. Besides improving the detection accuracy and eliminating the single point of failure, the contributions include appropriating fuzzy AI functions within the Road-side Unit node before authorizing status data by a Blockchain network. Finally, thorough experimental evaluation validates the effectiveness of the proposed model.Comment: 11 pages, 11 figures, 4 tables AsiaCCS conference 202

    A Comprehensive Survey on Signcryption Security Mechanisms in Wireless Body Area Networks

    Get PDF
    WBANs (Wireless Body Area Networks) are frequently depicted as a paradigm shift in healthcare from traditional to modern E-Healthcare. The vitals of the patient signs by the sensors are highly sensitive, secret, and vulnerable to numerous adversarial attacks. Since WBANs is a real-world application of the healthcare system, it’s vital to ensure that the data acquired by the WBANs sensors is secure and not accessible to unauthorized parties or security hazards. As a result, effective signcryption security solutions are required for the WBANs’ success and widespread use. Over the last two decades, researchers have proposed a slew of signcryption security solutions to achieve this goal. The lack of a clear and unified study in terms of signcryption solutions can offer a bird’s eye view of WBANs. Based on the most recent signcryption papers, we analyzed WBAN’s communication architecture, security requirements, and the primary problems in WBANs to meet the aforementioned objectives. This survey also includes the most up to date signcryption security techniques in WBANs environments. By identifying and comparing all available signcryption techniques in the WBANs sector, the study will aid the academic community in understanding security problems and causes. The goal of this survey is to provide a comparative review of the existing signcryption security solutions and to analyze the previously indicated solution given for WBANs. A multi-criteria decision-making approach is used for a comparative examination of the existing signcryption solutions. Furthermore, the survey also highlights some of the public research issues that researchers must face to develop the security features of WBANs.publishedVersio

    Lagrangian Recurrent Steganalysis and Hyper Elliptic Certificateless Signcryption for Secure Image Transmission

    Get PDF
    Present-day evolution in communication and information technology dispenses straightforward and effortless access to data, but the most noteworthy condition is the formation of secure communication. Numerous approaches were designed for safety communication. One of the crucial approaches is image steganography. Moreover, provisioning of information security services is arrived at via cryptosystems where cryptosystems make certain the secure messages transmission between the users in an untrustworthy circumstance.  The conventional method of providing encryption and signature is said to be first signing and then encryption, but both the computation and communication costs are found to be high. A certificateless signcryption mechanism is designed to transfer the medical data or images securely. This mechanism will minimize the storage and verification costs of public key certificates. The author of this article proposes a method named Lagrangian recurrent Steganalysis and Hyper Elliptic Certificateless Signcryption for transferring the medical data or images securely. In two sections the LRS-HECS method is split. They are medical image steganalysis and certificateless signcryption. First with the Chest X-Ray images obtained as input, a Codeword Correlated Lagrangian Recurrent Neural Network-based image steganography model is applied to generate steg images. Second, to transfer the medical images securely the steg images provided as input is designed a model named a Hyper Elliptic Curve-based Certificateless Signcryption. The issue of providing the integrity and validity of the transmitted medical images and receiver anonymity is addressed by the application of Hyper Elliptic Curve. Chest X-Ray pictures were used in experimental simulations, and the findings showed that the LRS-HECS approach had more advantages over existing state-of-the-art methods in terms of higher peak signal to noise ratio with data integrity and with reduced encryption time and transmission cost

    A survey on wireless body area networks: architecture, security challenges and research opportunities.

    Get PDF
    In the era of communication technologies, wireless healthcare networks enable innovative applications to enhance the quality of patients’ lives, provide useful monitoring tools for caregivers, and allows timely intervention. However, due to the sensitive information within the Wireless Body Area Networks (WBANs), insecure data violates the patients’ privacy and may consequently lead to improper medical diagnosis and/or treatment. Achieving a high level of security and privacy in WBAN involves various challenges due to its resource limitations and critical applications. In this paper, a comprehensive survey of the WBAN technology is provided, with a particular focus on the security and privacy concerns along with their countermeasures, followed by proposed research directions and open issues

    Exploratory study to explore the role of ICT in the process of knowledge management in an Indian business environment

    Get PDF
    In the 21st century and the emergence of a digital economy, knowledge and the knowledge base economy are rapidly growing. To effectively be able to understand the processes involved in the creating, managing and sharing of knowledge management in the business environment is critical to the success of an organization. This study builds on the previous research of the authors on the enablers of knowledge management by identifying the relationship between the enablers of knowledge management and the role played by information communication technologies (ICT) and ICT infrastructure in a business setting. This paper provides the findings of a survey collected from the four major Indian cities (Chennai, Coimbatore, Madurai and Villupuram) regarding their views and opinions about the enablers of knowledge management in business setting. A total of 80 organizations participated in the study with 100 participants in each city. The results show that ICT and ICT infrastructure can play a critical role in the creating, managing and sharing of knowledge in an Indian business environment

    CGST: Provably Secure Lightweight Certificateless Group Signcryption Technique Based on Fractional Chaotic Maps

    Get PDF
    In recent years, there has been a lot of research interest in analyzing chaotic constructions and their associated cryptographic structures. Compared with the essential combination of encryption and signature, the signcryption scheme has a more realistic solution for achieving message confidentiality and authentication simultaneously. However, the security of a signcryption scheme is questionable when deployed in modern safety-critical systems, especially as billions of sensitive user information is transmitted over open communication channels. In order to address this problem, a lightweight, provably secure certificateless technique that uses Fractional Chaotic Maps (FCM) for group-oriented signcryption (CGST) is proposed. The main feature of the CGST-FCM technique is that any group signcrypter may encrypt data/information with the group manager (GM) and have it sent to the verifier seamlessly. This implies the legitimacy of the signcrypted information/data is verifiable using the public conditions of the group, but they cannot link it to the conforming signcrypter. In this scenario, valid signcrypted information/data cannot be produced by the GM or any signcrypter in that category alone. However, the GM is allowed to reveal the identity of the signcrypter when there is a legal conflict to restrict repudiation of the signature. Generally, the CGST-FCM technique is protected from the indistinguishably chosen ciphertext attack (IND-CCA). Additionally, the computationally difficult Diffie-Hellman (DH) problems have been used to build unlinkability, untraceability, unforgeability, and robustness of the projected CGST-FCM scheme. Finally, the security investigation of the presented CGST-FCM technique shows appreciable consistency and high efficiency when applied in real-time security applications
    • …
    corecore