484 research outputs found

    Comprehensive Review on Detection and Classification of Power Quality Disturbances in Utility Grid With Renewable Energy Penetration

    Get PDF
    The global concern with power quality is increasing due to the penetration of renewable energy (RE) sources to cater the energy demands and meet de-carbonization targets. Power quality (PQ) disturbances are found to be more predominant with RE penetration due to the variable outputs and interfacing converters. There is a need to recognize and mitigate PQ disturbances to supply clean power to the consumer. This article presents a critical review of techniques used for detection and classification PQ disturbances in the utility grid with renewable energy penetration. The broad perspective of this review paper is to provide various concepts utilized for extraction of the features to detect and classify the PQ disturbances even in the noisy environment. More than 220 research publications have been critically reviewed, classified and listed for quick reference of the engineers, scientists and academicians working in the power quality area

    Fault Management in DC Microgrids:A Review of Challenges, Countermeasures, and Future Research Trends

    Get PDF
    The significant benefits of DC microgrids have instigated extensive efforts to be an alternative network as compared to conventional AC power networks. Although their deployment is ever-growing, multiple challenges still occurred for the protection of DC microgrids to efficiently design, control, and operate the system for the islanded mode and grid-tied mode. Therefore, there are extensive research activities underway to tackle these issues. The challenge arises from the sudden exponential increase in DC fault current, which must be extinguished in the absence of the naturally occurring zero crossings, potentially leading to sustained arcs. This paper presents cut-age and state-of-the-art issues concerning the fault management of DC microgrids. It provides an account of research in areas related to fault management of DC microgrids, including fault detection, location, identification, isolation, and reconfiguration. In each area, a comprehensive review has been carried out to identify the fault management of DC microgrids. Finally, future trends and challenges regarding fault management in DC-microgrids are also discussed

    Data Consistency for Data-Driven Smart Energy Assessment

    Get PDF
    In the smart grid era, the number of data available for different applications has increased considerably. However, data could not perfectly represent the phenomenon or process under analysis, so their usability requires a preliminary validation carried out by experts of the specific domain. The process of data gathering and transmission over the communication channels has to be verified to ensure that data are provided in a useful format, and that no external effect has impacted on the correct data to be received. Consistency of the data coming from different sources (in terms of timings and data resolution) has to be ensured and managed appropriately. Suitable procedures are needed for transforming data into knowledge in an effective way. This contribution addresses the previous aspects by highlighting a number of potential issues and the solutions in place in different power and energy system, including the generation, grid and user sides. Recent references, as well as selected historical references, are listed to support the illustration of the conceptual aspects

    A review of the enabling methodologies for knowledge discovery from smart grids data

    Get PDF
    The large-scale deployment of pervasive sensors and decentralized computing in modern smart grids is expected to exponentially increase the volume of data exchanged by power system applications. In this context, the research for scalable and flexible methodologies aimed at supporting rapid decisions in a data rich, but information limited environment represents a relevant issue to address. To this aim, this paper investigates the role of Knowledge Discovery from massive Datasets in smart grid computing, exploring its various application fields by considering the power system stakeholder available data and knowledge extraction needs. In particular, the aim of this paper is dual. In the first part, the authors summarize the most recent activities developed in this field by the Task Force on “Enabling Paradigms for High-Performance Computing in Wide Area Monitoring Protective and Control Systems” of the IEEE PSOPE Technologies and Innovation Subcommittee. Differently, in the second part, the authors propose the development of a data-driven forecasting methodology, which is modeled by considering the fundamental principles of Knowledge Discovery Process data workflow. Furthermore, the described methodology is applied to solve the load forecasting problem for a complex user case, in order to emphasize the potential role of knowledge discovery in supporting post processing analysis in data-rich environments, as feedback for the improvement of the forecasting performances
    • …
    corecore