3,052 research outputs found

    Reverse Engineering Gene Networks with ANN: Variability in Network Inference Algorithms

    Get PDF
    Motivation :Reconstructing the topology of a gene regulatory network is one of the key tasks in systems biology. Despite of the wide variety of proposed methods, very little work has been dedicated to the assessment of their stability properties. Here we present a methodical comparison of the performance of a novel method (RegnANN) for gene network inference based on multilayer perceptrons with three reference algorithms (ARACNE, CLR, KELLER), focussing our analysis on the prediction variability induced by both the network intrinsic structure and the available data. Results: The extensive evaluation on both synthetic data and a selection of gene modules of "Escherichia coli" indicates that all the algorithms suffer of instability and variability issues with regards to the reconstruction of the topology of the network. This instability makes objectively very hard the task of establishing which method performs best. Nevertheless, RegnANN shows MCC scores that compare very favorably with all the other inference methods tested. Availability: The software for the RegnANN inference algorithm is distributed under GPL3 and it is available at the corresponding author home page (http://mpba.fbk.eu/grimaldi/regnann-supmat

    Reverse-engineering transcriptional modules from gene expression data

    Full text link
    "Module networks" are a framework to learn gene regulatory networks from expression data using a probabilistic model in which coregulated genes share the same parameters and conditional distributions. We present a method to infer ensembles of such networks and an averaging procedure to extract the statistically most significant modules and their regulators. We show that the inferred probabilistic models extend beyond the data set used to learn the models.Comment: 5 pages REVTeX, 4 figure

    Refining Ensembles of Predicted Gene Regulatory Networks Based on Characteristic Interaction Sets

    Get PDF
    Different ensemble voting approaches have been successfully applied for reverse-engineering of gene regulatory networks. They are based on the assumption that a good approximation of true network structure can be derived by considering the frequencies of individual interactions in a large number of predicted networks. Such approximations are typically superior in terms of prediction quality and robustness as compared to considering a single best scoring network only. Nevertheless, ensemble approaches only work well if the predicted gene regulatory networks are sufficiently similar to each other. If the topologies of predicted networks are considerably different, an ensemble of all networks obscures interesting individual characteristics. Instead, networks should be grouped according to local topological similarities and ensemble voting performed for each group separately. We argue that the presence of sets of co-occurring interactions is a suitable indicator for grouping predicted networks. A stepwise bottom-up procedure is proposed, where first mutual dependencies between pairs of interactions are derived from predicted networks. Pairs of co-occurring interactions are subsequently extended to derive characteristic interaction sets that distinguish groups of networks. Finally, ensemble voting is applied separately to the resulting topologically similar groups of networks to create distinct group-ensembles. Ensembles of topologically similar networks constitute distinct hypotheses about the reference network structure. Such group-ensembles are easier to interpret as their characteristic topology becomes clear and dependencies between interactions are known. The availability of distinct hypotheses facilitates the design of further experiments to distinguish between plausible network structures. The proposed procedure is a reasonable refinement step for non-deterministic reverse-engineering applications that produce a large number of candidate predictions for a gene regulatory network, e. g. due to probabilistic optimization or a cross-validation procedure

    A survey of models for inference of gene regulatory networks

    Get PDF
    In this article, I present the biological backgrounds of microarray, ChIP-chip and ChIPSeq technologies and the application of computational methods in reverse engineering of gene regulatory networks (GRNs). The most commonly used GRNs models based on Boolean networks, Bayesian networks, relevance networks, differential and difference equations are described. A novel model for integration of prior biological knowledge in the GRNs inference is presented, too. The advantages and disadvantages of the described models are compared. The GRNs validation criteria are depicted. Current trends and further directions for GRNs inference using prior knowledge are given at the end of the paper

    Petri Nets with Fuzzy Logic (PNFL): Reverse Engineering and Parametrization

    Get PDF
    Background: The recent DREAM4 blind assessment provided a particularly realistic and challenging setting for network reverse engineering methods. The in silico part of DREAM4 solicited the inference of cycle-rich gene regulatory networks from heterogeneous, noisy expression data including time courses as well as knockout, knockdown and multifactorial perturbations. Methodology and Principal Findings: We inferred and parametrized simulation models based on Petri Nets with Fuzzy Logic (PNFL). This completely automated approach correctly reconstructed networks with cycles as well as oscillating network motifs. PNFL was evaluated as the best performer on DREAM4 in silico networks of size 10 with an area under the precision-recall curve (AUPR) of 81%. Besides topology, we inferred a range of additional mechanistic details with good reliability, e.g. distinguishing activation from inhibition as well as dependent from independent regulation. Our models also performed well on new experimental conditions such as double knockout mutations that were not included in the provided datasets. Conclusions: The inference of biological networks substantially benefits from methods that are expressive enough to deal with diverse datasets in a unified way. At the same time, overly complex approaches could generate multiple different models that explain the data equally well. PNFL appears to strike the balance between expressive power and complexity. This also applies to the intuitive representation of PNFL models combining a straightforward graphical notation with colloquial fuzzy parameters

    MICFuzzy : a maximal information content based fuzzy approach for reconstructing genetic networks

    Get PDF
    In systems biology, the accurate reconstruction of Gene Regulatory Networks (GRNs) is crucial since these networks can facilitate the solving of complex biological problems. Amongst the plethora of methods available for GRN reconstruction, information theory and fuzzy concepts-based methods have abiding popularity. However, most of these methods are not only complex, incurring a high computational burden, but they may also produce a high number of false positives, leading to inaccurate inferred networks. In this paper, we propose a novel hybrid fuzzy GRN inference model called MICFuzzy which involves the aggregation of the effects of Maximal Information Coefficient (MIC). This model has an information theory-based pre-processing stage, the output of which is applied as an input to the novel fuzzy model. In this preprocessing stage, the MIC component filters relevant genes for each target gene to significantly reduce the computational burden of the fuzzy model when selecting the regulatory genes from these filtered gene lists. The novel fuzzy model uses the regulatory effect of the identified activator-repressor gene pairs to determine target gene expression levels. This approach facilitates accurate network inference by generating a high number of true regulatory interactions while significantly reducing false regulatory predictions. The performance of MICFuzzy was evaluated using DREAM3 and DREAM4 challenge data, and the SOS real gene expression dataset. MICFuzzy outperformed the other state-of-the-art methods in terms of F-score, Matthews Correlation Coefficient, Structural Accuracy, and SS_mean, and outperformed most of them in terms of efficiency. MICFuzzy also had improved efficiency compared with the classical fuzzy model since the design of MICFuzzy leads to a reduction in combinatorial computation. Copyright: © 2023 Nakulugamuwa Gamage et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    A survey of models for inference of gene regulatory networks

    Get PDF
    In this article, I present the biological backgrounds of microarray, ChIP-chip and ChIPSeq technologies and the application of computational methods in reverse engineering of gene regulatory networks (GRNs). The most commonly used GRNs models based on Boolean networks, Bayesian networks, relevance networks, differential and difference equations are described. A novel model for integration of prior biological knowledge in the GRNs inference is presented, too. The advantages and disadvantages of the described models are compared. The GRNs validation criteria are depicted. Current trends and further directions for GRNs inference using prior knowledge are given at the end of the paper

    The Inferred Cardiogenic Gene Regulatory Network in the Mammalian Heart

    Get PDF
    Cardiac development is a complex, multiscale process encompassing cell fate adoption, differentiation and morphogenesis. To elucidate pathways underlying this process, a recently developed algorithm to reverse engineer gene regulatory networks was applied to time-course microarray data obtained from the developing mouse heart. Approximately 200 genes of interest were input into the algorithm to generate putative network topologies that are capable of explaining the experimental data via model simulation. To cull specious network interactions, thousands of putative networks are merged and filtered to generate scale-free, hierarchical networks that are statistically significant and biologically relevant. The networks are validated with known gene interactions and used to predict regulatory pathways important for the developing mammalian heart. Area under the precision-recall curve and receiver operator characteristic curve are 9% and 58%, respectively. Of the top 10 ranked predicted interactions, 4 have already been validated. The algorithm is further tested using a network enriched with known interactions and another depleted of them. The inferred networks contained more interactions for the enriched network versus the depleted network. In all test cases, maximum performance of the algorithm was achieved when the purely data-driven method of network inference was combined with a data-independent, functional-based association method. Lastly, the network generated from the list of approximately 200 genes of interest was expanded using gene-profile uniqueness metrics to include approximately 900 additional known mouse genes and to form the most likely cardiogenic gene regulatory network. The resultant network supports known regulatory interactions and contains several novel cardiogenic regulatory interactions. The method outlined herein provides an informative approach to network inference and leads to clear testable hypotheses related to gene regulation
    • …
    corecore