1,176 research outputs found

    The *-composition -A Novel Generating Method of Fuzzy Implications: An Algebraic Study

    Get PDF
    Fuzzy implications are one of the two most important fuzzy logic connectives, the other being t-norms. They are a generalisation of the classical implication from two-valued logic to the multivalued setting. A binary operation I on [0; 1] is called a fuzzy implication if (i) I is decreasing in the first variable, (ii) I is increasing in the second variable, (iii) I(0; 0) = I(1; 1) = 1 and I(1; 0) = 0. The set of all fuzzy implications defined on [0; 1] is denoted by I. Fuzzy implications have many applications in fields like fuzzy control, approximate reasoning, decision making, multivalued logic, fuzzy image processing, etc. Their applicational value necessitates new ways of generating fuzzy implications that are fit for a specific task. The generating methods of fuzzy implications can be broadly categorised as in the following: (M1): From binary functions on [0; 1], typically other fuzzy logic connectives, viz., (S;N)-, R-, QL- implications, (M2): From unary functions on [0,1], typically monotonic functions, for instance, Yager’s f-, g- implications, or from fuzzy negations, (M3): From existing fuzzy implications

    Implication operators generating pairs of weak negations and their algebraic structure

    Get PDF
    Negations operators have been developed and applied in many fields such as image processing, decision making, mathematical morphology, fuzzy logic, etc. One of the most effective non-monotonic operators are weak negations. This paper studies the algebraic structure and the characterization of the adjoint triples and Galois implication pairs which provides a fixed pair of weak negations. The obtained results allow the user to select the best conjunctor and implications associated with the most suitable negation to be used in the computations of the problem to be solved.Partially supported by the State Research Agency (AEI) and the European Regional Development Fund (ERDF) project TIN2016-76653-P, European Cooperation in Science & Technology (COST) Action CA17124

    Interval-valued and intuitionistic fuzzy mathematical morphologies as special cases of L-fuzzy mathematical morphology

    Get PDF
    Mathematical morphology (MM) offers a wide range of tools for image processing and computer vision. MM was originally conceived for the processing of binary images and later extended to gray-scale morphology. Extensions of classical binary morphology to gray-scale morphology include approaches based on fuzzy set theory that give rise to fuzzy mathematical morphology (FMM). From a mathematical point of view, FMM relies on the fact that the class of all fuzzy sets over a certain universe forms a complete lattice. Recall that complete lattices provide for the most general framework in which MM can be conducted. The concept of L-fuzzy set generalizes not only the concept of fuzzy set but also the concepts of interval-valued fuzzy set and Atanassov’s intuitionistic fuzzy set. In addition, the class of L-fuzzy sets forms a complete lattice whenever the underlying set L constitutes a complete lattice. Based on these observations, we develop a general approach towards L-fuzzy mathematical morphology in this paper. Our focus is in particular on the construction of connectives for interval-valued and intuitionistic fuzzy mathematical morphologies that arise as special, isomorphic cases of L-fuzzy MM. As an application of these ideas, we generate a combination of some well-known medical image reconstruction techniques in terms of interval-valued fuzzy image processing

    The ⊛-composition of fuzzy implications: Closures with respect to properties, powers and families

    Get PDF
    Recently, Vemuri and Jayaram proposed a novel method of generating fuzzy implications from a given pair of fuzzy implications. Viewing this as a binary operation ⊛ on the set II of fuzzy implications they obtained, for the first time, a monoid structure (I,⊛)(I,⊛) on the set II. Some algebraic aspects of (I,⊛)(I,⊛) had already been explored and hitherto unknown representation results for the Yager's families of fuzzy implications were obtained in [53] (N.R. Vemuri and B. Jayaram, Representations through a monoid on the set of fuzzy implications, fuzzy sets and systems, 247 (2014) 51–67). However, the properties of fuzzy implications generated or obtained using the ⊛-composition have not been explored. In this work, the preservation of the basic properties like neutrality, ordering and exchange principles , the functional equations that the obtained fuzzy implications satisfy, the powers w.r.t. ⊛ and their convergence, and the closures of some families of fuzzy implications w.r.t. the operation ⊛, specifically the families of (S,N)(S,N)-, R-, f- and g-implications, are studied. This study shows that the ⊛-composition carries over many of the desirable properties of the original fuzzy implications to the generated fuzzy implications and further, due to the associativity of the ⊛-composition one can obtain, often, infinitely many new fuzzy implications from a single fuzzy implication through self-composition w.r.t. the ⊛-composition

    Homomorphisms on the monoid of fuzzy implications and the iterative functional equation I(x,I(x,y))=I(x,y)

    Get PDF
    Recently, Vemuri and Jayaram proposed a novel method of generating fuzzy implications, called the ⊛⊛-composition, from a given pair of fuzzy implications [Representations through a Monoid on the set of Fuzzy Implications, Fuzzy Sets and Systems, 247, 51-67]. However, as with any generation process, the ⊛⊛-composition does not always generate new fuzzy implications. In this work, we study the generative power of the ⊛⊛-composition. Towards this end, we study some specific functional equations all of which lead to the solutions of the iterative functional equation I(x,I(x,y))=I(x,y)I(x,I(x,y))=I(x,y) involving fuzzy implications which has been studied extensively for different families of fuzzy implications in this very journal, see [Information Sciences 177, 2954–2970 (2007); 180, 2487–2497 (2010); 186, 209–221 (2012)]. In this work, unlike in other existing works, we do not restrict the solutions to a particular family of fuzzy implications. Thus we take an algebraic approach towards solving these functional equations. Viewing the ⊛⊛-composition as a binary operation ⊛⊛ on the set II of all fuzzy implications one obtains a monoid structure (I,⊛)(I,⊛) on the set II. From the Cayley’s theorem for monoids, we know that any monoid is isomorphic to the set of all right translations. We determine the complete set KK of fuzzy implications w.r.t. which the right translations also become semigroup homomorphisms on the monoid (I,⊛I,⊛) and show that KK not only answers our questions regarding the generative power of the ⊛⊛-composition but also contains many as yet unknown solutions of the iterative functional equation I(x,I(x,y))=I(x,y)I(x,I(x,y))=I(x,y)

    Some New Implication Operations Emerging From Fuzzy Logic

    Get PDF
    We choose, from fuzzy set theory, t-norms, t-conorms and fuzzy compliments which forms dual triplet that is (i,u,c) that satisfy the DeMorgan's law, these dual triplet are used in the construction of fuzzy implications in fuzzy logic. In this work introduction of fuzzy implication is given, which included definition of fuzzy implications and their properties and also distinct classes of fuzzy implication (S, R and QL-implications). Further also described previous work on fuzzy implication and supporting literature of construction of fuzzy implication are given. Finally main contribution of work is to design new fuzzy implication and their graphical representations
    corecore