2,608 research outputs found

    AnonyControl: Control Cloud Data Anonymously with Multi-Authority Attribute-Based Encryption

    Full text link
    Cloud computing is a revolutionary computing paradigm which enables flexible, on-demand and low-cost usage of computing resources. However, those advantages, ironically, are the causes of security and privacy problems, which emerge because the data owned by different users are stored in some cloud servers instead of under their own control. To deal with security problems, various schemes based on the Attribute- Based Encryption (ABE) have been proposed recently. However, the privacy problem of cloud computing is yet to be solved. This paper presents an anonymous privilege control scheme AnonyControl to address the user and data privacy problem in a cloud. By using multiple authorities in cloud computing system, our proposed scheme achieves anonymous cloud data access, finegrained privilege control, and more importantly, tolerance to up to (N -2) authority compromise. Our security and performance analysis show that AnonyControl is both secure and efficient for cloud computing environment.Comment: 9 pages, 6 figures, 3 tables, conference, IEEE INFOCOM 201

    ABAKA : a novel attribute-based k-anonymous collaborative solution for LBSs

    Get PDF
    The increasing use of mobile devices, along with advances in telecommunication systems, increased the popularity of Location-Based Services (LBSs). In LBSs, users share their exact location with a potentially untrusted Location-Based Service Provider (LBSP). In such a scenario, user privacy becomes a major con- cern: the knowledge about user location may lead to her identification as well as a continuous tracing of her position. Researchers proposed several approaches to preserve users’ location privacy. They also showed that hiding the location of an LBS user is not enough to guarantee her privacy, i.e., user’s pro- file attributes or background knowledge of an attacker may reveal the user’s identity. In this paper we propose ABAKA, a novel collaborative approach that provides identity privacy for LBS users considering users’ profile attributes. In particular, our solution guarantees p -sensitive k -anonymity for the user that sends an LBS request to the LBSP. ABAKA computes a cloaked area by collaborative multi-hop forwarding of the LBS query, and using Ciphertext-Policy Attribute-Based Encryption (CP-ABE). We ran a thorough set of experiments to evaluate our solution: the results confirm the feasibility and efficiency of our proposal
    • …
    corecore