3 research outputs found

    ‎Application of superhypergraphs-based domination number in real world

    Get PDF
    The concept of (quasi) superhypergraphs as a generalization of graphs makes a relation between some sets of elements in detail and in general (in the form of parts to parts, parts to whole, and whole to whole elements of sets) and is very useful in the real world. This paper considers the novel concept of (quasi) superhypergraphs and introduces the notation of dominating set and domination number of (quasi) superhypergraphs. Especially, we have analyzed the domination number of uniform (quasi) superhypergraphs and computed their domination number on different cases. The flows (from right to left, from left to right, and two-sided) as maps play a main role in (quasi) superhypergraphs and it is proved that domination numbers of (quasi) superhypergraphs are dependent on the flows. We define the valued-star (quasi) superhypergraphs for the design of hypernetworks and compute their domination numbers. We have shown that the domination numbers of valued-star (quasi) superhypergraphs are distinct in  different flow states. In final, we introduce some applications of dominating sets of (quasi) superhypergraphs in hypernetwork as computer networks and treatment networks with the optimal application

    Decision Making Based on Valued Fuzzy Superhypergraphs

    Get PDF
    This paper explores the defects in fuzzy (hyper) graphs (as complex (hyper) networks) and extends the fuzzy (hyper) graphs to fuzzy (quasi) superhypergraphs as a new concept.We have modeled the fuzzy superhypergraphs as complex superhypernetworks in order to make a relation between labeled objects in the form of details and generalities. Indeed, the structure of fuzzy (quasi) superhypergraphs collects groups of labeled objects and analyzes them in the form of the part to part of objects, the part of objects to the whole group of objects, and the whole to the whole group of objects at the same time. We have investigated the properties of fuzzy (quasi) superhypergraphs based on any positive real number as valued fuzzy (quasi) superhypergraphs, considering the complement of valued fuzzy (quasi) superhypergraphs, the notation of isomorphism of valued fuzzy (quasi) superhypergraphs based on the permutations, and we have presented the isomorphic conditions of (self complemented) valued fuzzy (quasi) superhypergraphs. The concept of impact membership value of fuzzy (quasi) superhypergraphs is introduced in this study and it is applied in designing the real problem in the real world. Finally, the problem of business superhypernetworks is presented as an application of fuzzy valued quasi superhypergraphs in the real world

    Fuzzy hypergraphs and related extensions

    No full text
    corecore