7,967 research outputs found

    Improving Function Coverage with Munch: A Hybrid Fuzzing and Directed Symbolic Execution Approach

    Full text link
    Fuzzing and symbolic execution are popular techniques for finding vulnerabilities and generating test-cases for programs. Fuzzing, a blackbox method that mutates seed input values, is generally incapable of generating diverse inputs that exercise all paths in the program. Due to the path-explosion problem and dependence on SMT solvers, symbolic execution may also not achieve high path coverage. A hybrid technique involving fuzzing and symbolic execution may achieve better function coverage than fuzzing or symbolic execution alone. In this paper, we present Munch, an open source framework implementing two hybrid techniques based on fuzzing and symbolic execution. We empirically show using nine large open-source programs that overall, Munch achieves higher (in-depth) function coverage than symbolic execution or fuzzing alone. Using metrics based on total analyses time and number of queries issued to the SMT solver, we also show that Munch is more efficient at achieving better function coverage.Comment: To appear at 33rd ACM/SIGAPP Symposium On Applied Computing (SAC). To be held from 9th to 13th April, 201

    Targeted Greybox Fuzzing with Static Lookahead Analysis

    Full text link
    Automatic test generation typically aims to generate inputs that explore new paths in the program under test in order to find bugs. Existing work has, therefore, focused on guiding the exploration toward program parts that are more likely to contain bugs by using an offline static analysis. In this paper, we introduce a novel technique for targeted greybox fuzzing using an online static analysis that guides the fuzzer toward a set of target locations, for instance, located in recently modified parts of the program. This is achieved by first semantically analyzing each program path that is explored by an input in the fuzzer's test suite. The results of this analysis are then used to control the fuzzer's specialized power schedule, which determines how often to fuzz inputs from the test suite. We implemented our technique by extending a state-of-the-art, industrial fuzzer for Ethereum smart contracts and evaluate its effectiveness on 27 real-world benchmarks. Using an online analysis is particularly suitable for the domain of smart contracts since it does not require any code instrumentation---instrumentation to contracts changes their semantics. Our experiments show that targeted fuzzing significantly outperforms standard greybox fuzzing for reaching 83% of the challenging target locations (up to 14x of median speed-up)

    MagicPairing: Apple's Take on Securing Bluetooth Peripherals

    Full text link
    Device pairing in large Internet of Things (IoT) deployments is a challenge for device manufacturers and users. Bluetooth offers a comparably smooth trust on first use pairing experience. Bluetooth, though, is well-known for security flaws in the pairing process. In this paper, we analyze how Apple improves the security of Bluetooth pairing while still maintaining its usability and specification compliance. The proprietary protocol that resides on top of Bluetooth is called MagicPairing. It enables the user to pair a device once with Apple's ecosystem and then seamlessly use it with all their other Apple devices. We analyze both, the security properties provided by this protocol, as well as its implementations. In general, MagicPairing could be adapted by other IoT vendors to improve Bluetooth security. Even though the overall protocol is well-designed, we identified multiple vulnerabilities within Apple's implementations with over-the-air and in-process fuzzing
    corecore