7,967 research outputs found
Improving Function Coverage with Munch: A Hybrid Fuzzing and Directed Symbolic Execution Approach
Fuzzing and symbolic execution are popular techniques for finding
vulnerabilities and generating test-cases for programs. Fuzzing, a blackbox
method that mutates seed input values, is generally incapable of generating
diverse inputs that exercise all paths in the program. Due to the
path-explosion problem and dependence on SMT solvers, symbolic execution may
also not achieve high path coverage. A hybrid technique involving fuzzing and
symbolic execution may achieve better function coverage than fuzzing or
symbolic execution alone. In this paper, we present Munch, an open source
framework implementing two hybrid techniques based on fuzzing and symbolic
execution. We empirically show using nine large open-source programs that
overall, Munch achieves higher (in-depth) function coverage than symbolic
execution or fuzzing alone. Using metrics based on total analyses time and
number of queries issued to the SMT solver, we also show that Munch is more
efficient at achieving better function coverage.Comment: To appear at 33rd ACM/SIGAPP Symposium On Applied Computing (SAC). To
be held from 9th to 13th April, 201
Targeted Greybox Fuzzing with Static Lookahead Analysis
Automatic test generation typically aims to generate inputs that explore new
paths in the program under test in order to find bugs. Existing work has,
therefore, focused on guiding the exploration toward program parts that are
more likely to contain bugs by using an offline static analysis.
In this paper, we introduce a novel technique for targeted greybox fuzzing
using an online static analysis that guides the fuzzer toward a set of target
locations, for instance, located in recently modified parts of the program.
This is achieved by first semantically analyzing each program path that is
explored by an input in the fuzzer's test suite. The results of this analysis
are then used to control the fuzzer's specialized power schedule, which
determines how often to fuzz inputs from the test suite. We implemented our
technique by extending a state-of-the-art, industrial fuzzer for Ethereum smart
contracts and evaluate its effectiveness on 27 real-world benchmarks. Using an
online analysis is particularly suitable for the domain of smart contracts
since it does not require any code instrumentation---instrumentation to
contracts changes their semantics. Our experiments show that targeted fuzzing
significantly outperforms standard greybox fuzzing for reaching 83% of the
challenging target locations (up to 14x of median speed-up)
MagicPairing: Apple's Take on Securing Bluetooth Peripherals
Device pairing in large Internet of Things (IoT) deployments is a challenge
for device manufacturers and users. Bluetooth offers a comparably smooth trust
on first use pairing experience. Bluetooth, though, is well-known for security
flaws in the pairing process. In this paper, we analyze how Apple improves the
security of Bluetooth pairing while still maintaining its usability and
specification compliance. The proprietary protocol that resides on top of
Bluetooth is called MagicPairing. It enables the user to pair a device once
with Apple's ecosystem and then seamlessly use it with all their other Apple
devices. We analyze both, the security properties provided by this protocol, as
well as its implementations. In general, MagicPairing could be adapted by other
IoT vendors to improve Bluetooth security. Even though the overall protocol is
well-designed, we identified multiple vulnerabilities within Apple's
implementations with over-the-air and in-process fuzzing
- …
