10,931 research outputs found

    Narrow Linewidth 780 nm Distributed Feedback Lasers for Cold Atom Quantum Technology

    Get PDF
    Cold atom quantum technology systems have a wide range of potential applications which includes atomic clocks, rotational sensors, inertial sensors, quantum navigators, magnetometers and gravimeters. The UK Quantum Technology Hub in Sensors and Metrology has the aim of developing miniature cold atom systems using an approach similar to that pioneered by the chip scale atomic clock where microfabricated vacuum chambers have atomic transitions excited and probed by lasers. Whilst narrow linewidth Ti:Sa and external cavity diode lasers have been required for cooling and control, such lasers are too large, power hungry and expensive for future miniature cold atom systems. Here we demonstrate 1 mm long 780.24 nm GaAs/AlGaAs distributed feedback (DFB) lasers aimed at 87Rb cold atom systems operating at 20 ˚C with over 50 mW of power and side-mode suppression ratios of 46 dB using sidewall gratings and no regrowth. Rb spectroscopy is used to demonstrate linewidths below the required 6.07 MHz natural linewidth of the 87Rb D2 optical transition used for cooling. Initial packaged fibre-coupled devices demonstrate lifetimes greater than 200 hours. We also investigate the use of integrated semiconductor amplifiers (SOAs) and longer devices to further reduce the linewidths well below 1 MHz. A range of options to control the populations of electrons in the hyperfine split energy levels spaced by 3.417 GHz are examined. Two integrated lasers, integrated electro-absorption modulators (EAMs) and the direct modulation of a single DFB laser approaches are investigated and we will discuss which is best suited to integrated cold atom systems

    Cost efficient narrow linewidth laser transmitter for coherent detection

    Get PDF
    Authors present a cost efficient narrow linewidth laser transmitter for future coherent detection systems. The spectral purity of the laser allows the phase modulation of data signals at bit rates as low as 155 Mb/s

    Active Faraday optical frequency standards

    Full text link
    We propose the mechanism of active Faraday optical clock, and experimentally demonstrate active Faraday optical frequency standards based on 852 nm narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standards is determined by the cesium 6 2S1/2^{2}S_{1/2} FF = 4 to 6 2P3/2^{2}P_{3/2} FF' = 4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 996(26) Hz, which is 5.3 ×\times 103^{3} times smaller than the natural linewidth of the cesium 852 nm transition line. The maximum emitted light power reaches 75 \upmuW. The active Faraday optical frequency standards reported here have advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.Comment: 4 pages, 4 figure

    Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range

    Get PDF
    We report a monolithic photonic integrated circuit (PIC) for THz communication applications. The PIC generates up to 4 optical frequency lines which can be mixed in a separate device to generate THz radiation, and each of the optical lines can be modulated individually to encode data. Physically, the PIC comprises an array of wavelength tunable distributed feedback lasers each with its own electro-absorption modulator. The lasers are designed with a long cavity to operate with a narrow linewidth, typically <4 MHz. The light from the lasers is coupled via an multimode interference (MMI) coupler into a semiconductor optical amplifier (SOA). By appropriate selection and biasing of pairs of lasers, the optical beat signal can be tuned continuously over the range from 0.254 THz to 2.723 THz. The EAM of each channel enables signal leveling balanced between the lasers and realizing data encoding, currently at data rates up to 6.5 Gb/s. The PIC is fabricated using regrowth-free techniques, making it economic for volume applications, such for use in data centers. The PIC also has a degree of redundancy, making it suitable for applications, such as inter-satellite communications, where high reliability is mandatory
    corecore