28,467 research outputs found

    Recent progress and challenges in exploiting graphics processors in computational fluid dynamics

    Full text link
    The progress made in accelerating simulations of fluid flow using GPUs, and the challenges that remain, are surveyed. The review first provides an introduction to GPU computing and programming, and discusses various considerations for improved performance. Case studies comparing the performance of CPU- and GPU- based solvers for the Laplace and incompressible Navier-Stokes equations are performed in order to demonstrate the potential improvement even with simple codes. Recent efforts to accelerate CFD simulations using GPUs are reviewed for laminar, turbulent, and reactive flow solvers. Also, GPU implementations of the lattice Boltzmann method are reviewed. Finally, recommendations for implementing CFD codes on GPUs are given and remaining challenges are discussed, such as the need to develop new strategies and redesign algorithms to enable GPU acceleration.Comment: In press in the Journal of Supercomputin

    Microgravity combustion science: Progress, plans, and opportunities

    Get PDF
    An earlier overview is updated which introduced the promise of microgravity combustion research and provided a brief survey of results and then current research participants, the available set of reduced gravity facilities, and plans for experimental capabilities in the space station era. Since that time, several research studies have been completed in drop towers and aircraft, and the first space based combustion experiments since Skylab have been conducted on the Shuttle. The microgravity environment enables a new range of experiments to be performed since buoyancy induced flows are nearly eliminated, normally obscured forces and flows may be isolated, gravitational settling or sedimentation is nearly eliminated, and larger time or length scales in experiments are feasible. In addition to new examinations of classical problems, (e.g., droplet burning), current areas of interest include soot formation and weak turbulence, as influenced by gravity

    Aeronautical Engineering: A special bibliography, supplement 60

    Get PDF
    This bibliography lists 284 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1975

    State of the Art in the Optimisation of Wind Turbine Performance Using CFD

    Get PDF
    Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained.</p

    Research and Technology

    Get PDF
    Langley Research Center is engaged in the basic an applied research necessary for the advancement of aeronautics and space flight, generating advanced concepts for the accomplishment of related national goals, and provding research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Highlights of major accomplishments and applications are presented

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Aeronautical Engineering: A special bibliography with indexes, supplement 67, February 1976

    Get PDF
    This bibliography lists 341 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1976

    Aeronautical Engineering: A special bibliography with indexes, supplement 54

    Get PDF
    This bibliography lists 316 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1975
    corecore