2,568 research outputs found

    Future Mobile Communications: LTE Optimization and Mobile Network Virtualization

    Get PDF
    Providing QoS while optimizing the LTE network in a cost efficient manner is very challenging. Thus, radio scheduling is one of the most important functions in mobile broadband networks. The design of a mobile network radio scheduler holds several objectives that need to be satisfied, for example: the scheduler needs to maximize the radio performance by efficiently distributing the limited radio resources, since the operator's revenue depends on it. In addition, the scheduler has to guarantee the user's demands in terms of their Quality of Service (QoS). Thus, the design of an effective scheduler is rather a complex task. In this thesis, the author proposes the design of a radio scheduler that is optimized towards QoS guarantees and system performance optimization. The proposed scheduler is called Optimized Service Aware Scheduler (OSA). The OSA scheduler is tested and analyzed in several scenarios, and is compared against other well-known schedulers. A novel wireless network virtualization framework is also proposed in this thesis. The framework targets the concepts of wireless virtualization applied within the 3GPP Long Term Evolution (LTE) system. LTE represents one of the new mobile communication systems that is just entering the market. Therefore, LTE was chosen as a case study to demonstrate the proposed wireless virtualization framework. The framework is implemented in the LTE network simulator and analyzed, highlighting the many advantages and potential gain that the virtualization process can achieve. Two potential gain scenarios that can result from using network virtualization in LTE systems are analyzed: Multiplexing gain coming from spectrum sharing, and multi-user diversity gain. Several LTE radio analytical models, based on Continuous Time Markov Chains (CTMC) are designed and developed in this thesis. These models target the modeling of three different time domain radio schedulers: Maximum Throughput (MaxT), Blind Equal Throughput (BET), and Optimized Service Aware Scheduler (OSA). The models are used to obtain faster results (i.e., in a very short time period in the order of seconds to minutes), compared to the simulation results that can take considerably longer periods, such as hours or sometimes even days. The model results are also compared against the simulation results, and it is shown that it provides a good match. Thus, it can be used for fast radio dimensioning purposes. Overall, the concepts, investigations, and the analytical models presented in this thesis can help mobile network operators to optimize their radio network and provide the necessary means to support services QoS differentiations and guarantees. In addition, the network virtualization concepts provides an excellent tool that can enable the operators to share their resources and reduce their cost, as well as provides good chances for smaller operators to enter the market

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Optimal Virtualized Inter-Tenant Resource Sharing for Device-to-Device Communications in 5G Networks

    Get PDF
    Device-to-Device (D2D) communication is expected to enable a number of new services and applications in future mobile networks and has attracted significant research interest over the last few years. Remarkably, little attention has been placed on the issue of D2D communication for users belonging to different operators. In this paper, we focus on this aspect for D2D users that belong to different tenants (virtual network operators), assuming virtualized and programmable future 5G wireless networks. Under the assumption of a cross-tenant orchestrator, we show that significant gains can be achieved in terms of network performance by optimizing resource sharing from the different tenants, i.e., slices of the substrate physical network topology. To this end, a sum-rate optimization framework is proposed for optimal sharing of the virtualized resources. Via a wide site of numerical investigations, we prove the efficacy of the proposed solution and the achievable gains compared to legacy approaches.Comment: 10 pages, 7 figure

    Soft-Defined Heterogeneous Vehicular Network: Architecture and Challenges

    Full text link
    Heterogeneous Vehicular NETworks (HetVNETs) can meet various quality-of-service (QoS) requirements for intelligent transport system (ITS) services by integrating different access networks coherently. However, the current network architecture for HetVNET cannot efficiently deal with the increasing demands of rapidly changing network landscape. Thanks to the centralization and flexibility of the cloud radio access network (Cloud-RAN), soft-defined networking (SDN) can conveniently be applied to support the dynamic nature of future HetVNET functions and various applications while reducing the operating costs. In this paper, we first propose the multi-layer Cloud RAN architecture for implementing the new network, where the multi-domain resources can be exploited as needed for vehicle users. Then, the high-level design of soft-defined HetVNET is presented in detail. Finally, we briefly discuss key challenges and solutions for this new network, corroborating its feasibility in the emerging fifth-generation (5G) era

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page
    corecore