3,290 research outputs found

    Further Optimal Regret Bounds for Thompson Sampling

    Full text link
    Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical performance compared to the state of the art methods. In this paper, we provide a novel regret analysis for Thompson Sampling that simultaneously proves both the optimal problem-dependent bound of (1+Ο΅)βˆ‘iln⁑TΞ”i+O(NΟ΅2)(1+\epsilon)\sum_i \frac{\ln T}{\Delta_i}+O(\frac{N}{\epsilon^2}) and the first near-optimal problem-independent bound of O(NTln⁑T)O(\sqrt{NT\ln T}) on the expected regret of this algorithm. Our near-optimal problem-independent bound solves a COLT 2012 open problem of Chapelle and Li. The optimal problem-dependent regret bound for this problem was first proven recently by Kaufmann et al. [ALT 2012]. Our novel martingale-based analysis techniques are conceptually simple, easily extend to distributions other than the Beta distribution, and also extend to the more general contextual bandits setting [Manuscript, Agrawal and Goyal, 2012].Comment: arXiv admin note: substantial text overlap with arXiv:1111.179

    An Information-Theoretic Analysis of Thompson Sampling

    Full text link
    We provide an information-theoretic analysis of Thompson sampling that applies across a broad range of online optimization problems in which a decision-maker must learn from partial feedback. This analysis inherits the simplicity and elegance of information theory and leads to regret bounds that scale with the entropy of the optimal-action distribution. This strengthens preexisting results and yields new insight into how information improves performance
    • …
    corecore