1,426,390 research outputs found

    TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria

    Get PDF
    The 18-kDa translocator protein (TSPO) localizes in the outer mitochondrial membrane (OMM) of cells and is readily up-regulated under various pathological conditions such as cancer, inflammation, mechanical lesions and neurological diseases. Able to bind with high affinity synthetic and endogenous ligands, its core biochemical function resides in the translocation of cholesterol into the mitochondria influencing the subsequent steps of (neuro-)steroid synthesis and systemic endocrine regulation. Over the years, however, TSPO has also been linked to core cellular processes such as apoptosis and autophagy. It interacts and forms complexes with other mitochondrial proteins such as the voltage-dependent anion channel (VDAC) via which signalling and regulatory transduction of these core cellular events may be influenced. Despite nearly 40 years of study, the precise functional role of TSPO beyond cholesterol trafficking remains elusive even though the recent breakthroughs on its high-resolution crystal structure and contribution to quality-control signalling of mitochondria. All this along with a captivating pharmacological profile provides novel opportunities to investigate and understand the significance of this highly conserved protein as well as contribute the development of specific therapeutics as presented and discussed in the present review

    Ferric uptake regulator Fur is conditionally essential in Pseudomonas aeruginosa

    Get PDF
    In Pseudomonas aeruginosa, the ferric uptake regulator (Fur) protein controls both metabolism and virulence in response to iron availability. Differently from other bacteria, attempts to obtain fur deletion mutants of P. aeruginosa failed, leading to the assumption that Fur is an essential protein in this bacterium. By investigating a P. aeruginosa conditional fur mutant, we demonstrate that Fur is not essential for P. aeruginosa growth in liquid media, biofilm formation, and pathogenicity in an insect model of infection. Conversely, Fur is essential for growth on solid media since Fur-depleted cells are severely impaired in colony formation. Transposon-mediated random mutagenesis experiments identified pyochelin siderophore biosynthesis as a major cause of the colony growth defect of the conditional fur mutant, and deletion mutagenesis confirmed this evidence. Impaired colony growth of pyochelin-proficient Fur-depleted cells does not depend on oxidative stress, since Fur-depleted cells do not accumulate higher levels of reactive oxygen species (ROS) and are not rescued by antioxidant agents or overexpression of ROS-detoxifying enzymes. Ectopic expression of pch genes revealed that pyochelin production has no inhibitory effects on a fur deletion mutant of Pseudomonas syringae pv. tabaci, suggesting that the toxicity of the pch locus in Fur-depleted cells involves a P. aeruginosa-specific pathway(s)

    Frustrations of fur-farmed mink

    Get PDF
    Captive animals may suffer if strongly motivated to perform activities that their housing does not allow. We investigated this experimentally for caged mink, and found that they would pay high costs to perform a range of natural behaviours, and release cortisol if their most preferred activity, swimming, was prevented. Investigates the effect of limitations on caged mink. Popularity of fur farming; Research into the possible deprivation of mink, which result in their frustration; Details of the experiment; Impact of an access to water; Results which indicate that fur-farmed mink are still motivated to perform the same activities as their wild counterpart

    Stanford oceanographic expedition 17, Galapagos Islands and vicinity, 22 February-23 March 1968: observations on birds, the Galapagos fur seal, and cetaceans

    Get PDF
    1. Systematic list of birds (pp. 23-31) 2. Observations on the Galapagos fur seal, Arctocephalus australis galapagoensis Heller, 1904 (pp. 31-33) 3. Cetaceans observed (pp. 33-34

    Fur

    Get PDF

    Transcriptional and Proteomic Analysis of a Ferric Uptake Regulator (Fur) Mutant of Shewanella oneidensis: Possible Involvement of Fur in Energy Metabolism, Transcriptional Regulation, and Oxidative Stress

    Get PDF
    The iron-directed, coordinate regulation of genes depends on the fur (ferric uptake regulator) gene product, which acts as an iron-responsive, transcriptional repressor protein. To investigate the biological function of a fur homolog in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1, a fur knockout strain (FUR1) was generated by suicide plasmid integration into this gene and characterized using phenotype assays, DNA microarrays containing 691 arrayed genes, and two-dimensional polyacrylamide gel electrophoresis. Physiological studies indicated that FUR1 was similar to the wild-type strain when they were compared for anaerobic growth and reduction of various electron acceptors. Transcription profiling, however, revealed that genes with predicted functions in electron transport, energy metabolism, transcriptional regulation, and oxidative stress protection were either repressed (ccoNQ, etrA, cytochrome b and c maturation-encoding genes, qor, yiaY, sodB, rpoH, phoB, and chvI) or induced (yggW, pdhC, prpC, aceE, fdhD, and ppc) in the fur mutant. Disruption of fur also resulted in derepression of genes (hxuC, alcC, fhuA, hemR, irgA, and ompW) putatively involved in iron uptake. This agreed with the finding that the fur mutant produced threefold-higher levels of siderophore than the wild-type strain under conditions of sufficient iron. Analysis of a subset of the FUR1 proteome (i.e., primarily soluble cytoplasmic and periplasmic proteins) indicated that 11 major protein species reproducibly showed significant (P < 0.05) differences in abundance relative to the wild type. Protein identification using mass spectrometry indicated that the expression of two of these proteins (SodB and AlcC) correlated with the microarray data. These results suggest a possible regulatory role of S. oneidensis MR-1 Fur in energy metabolism that extends the traditional model of Fur as a negative regulator of iron acquisition systems

    Research Progress

    Get PDF
    Cooperating with the United States Department of AgricultureIntroduction -- Outlook -- History -- Facilities -- Organization -- Financing -- Report of progress -- Fertilizers -- Dairying -- Grazing -- Forages -- Irrigation -- Cereals -- Weed control -- Potatoes & vegetables -- Plant diseases -- Insects -- Marketing & management -- Fur production -- Publications -- Staff -- Project

    Analysis of Gray Fox (Urocyon cinereoargenteus) Fur Harvests in Arkansas

    Get PDF
    An investigation was conducted on gray fox (Urocyon cinereoargenteus) fur harvest in Arkansas. Data were gathered from a mail survey of Arkansas trappers and from Arkansas Game and Fish Commission fur harvest records from 1939 to 1983. Analyses of these data demonstrated: 1) gray fox were abundant statewide with lower levels in the Delta region; 2) there was a need for fox trappers to keep better records on their trapping efforts, success and composition of catch, including sex and age data; 3) market price: harvest correlation was high (r = 0.956, p \u3c .001); 4) over the past 10 years, the Ozark Mountain region provided the greatest contribution to annual fox harvests, the Ouachita Mountain and Gulf Coastal Plain regions were similar to each other, but lower than the Ozarks, and the Delta region contributed the least, but with a generally stable harvest

    Ectoparasitic Arthropods Collected From Some Northern Ohio Mammals

    Get PDF
    Ectoparasitic arthropods were collected from some fur-bearing mammals in northern Ohio. Specimens representing seven mammalian species were examined and found to collectively harbor acarines, fleas, and biting lice. Species determinations were made and new host and state records noted
    corecore