4 research outputs found

    Fundamental finite key limits for information reconciliation in quantum key distribution

    Get PDF
    The security of quantum key distribution protocols is guaranteed by the laws of quantum mechanics. However, a precise analysis of the security properties requires tools from both classical cryptography and information theory. Here, we employ recent results in non-asymptotic classical information theory to show that information reconciliation imposes fundamental limitations on the amount of secret key that can be extracted in the finite key regime. In particular, we find that an often used approximation for the information leakage during one-way information reconciliation is flawed and we propose an improved estimate

    Fundamental Finite Key Limits for One-Way Information Reconciliation in Quantum Key Distribution

    Full text link
    The security of quantum key distribution protocols is guaranteed by the laws of quantum mechanics. However, a precise analysis of the security properties requires tools from both classical cryptography and information theory. Here, we employ recent results in non-asymptotic classical information theory to show that one-way information reconciliation imposes fundamental limitations on the amount of secret key that can be extracted in the finite key regime. In particular, we find that an often used approximation for the information leakage during information reconciliation is not generally valid. We propose an improved approximation that takes into account finite key effects and numerically test it against codes for two probability distributions, that we call binary-binary and binary-Gaussian, that typically appear in quantum key distribution protocols

    Security performance and protocol consideration in optical communication system with optical layer security enabled by optical coding techniques

    Get PDF
    With the fast development of communication systems, network security issues have more and more impact on daily life. It is essential to construct a high degree of optical layer security to resolve the security problem once and for all. Three different techniques which can provide optical layer security are introduced and compared. Optical chaos can be used for fast random number generation. Quantum cryptography is the most promising technique for key distribution. And the optical coding techniques can be deployed to encrypt the modulated signal in the optical layer. A mathematical equation has been derived from information theory to evaluate the information-theoretic security level of the wiretap channel in optical coding schemes. And the merits and limitation of two coherent optical coding schemes, temporal phase coding and spectral phase coding, have been analysed. The security scheme based on a reconfigurable optical coding device has been introduced, and the corresponding security protocol has been developed. By moving the encryption operation from the electronic layer to the optical layer, the modulated signals become opaque to the unauthorised users. Optical code distribution and authentication is the one of the major challenges for our proposed scheme. In our proposed protocol, both of the operations are covered and defined in detail. As a preliminary draft of the optical code security protocol, it could be a useful guidance for further research

    Classical processing algorithms for Quantum Information Security

    Get PDF
    In this thesis, we investigate how the combination of quantum physics and information theory could deliver solutions at the forefront of information security, and, in particular, we consider two focus applications: randomness extraction as applied to quantum random number generators and classical processing algorithms for quantum key distribution (QKD). We concentrate on practical applications for such tools. We detail the implementation of a randomness extractor for a commercial quantum random number generator, and we evaluate its performance based on information theory. Then, we focus on QKD as applied to a specific experimental scenario, that is, the one of free-space quantum links. Commercial solutions with quantum links operating over optical fibers, in fact, already exist, but suffer from severe infrastructure complexity and cost overheads. Free-space QKD allows for a higher flexibility, for both terrestrial and satellite links, whilst experiencing higher attenuation and noise at the receiver. In this work, its feasibility is investigated and proven in multiple experiments over links of different length, and in various channel conditions. In particular, after a thorough analysis of information reconciliation protocols, we consider finite-key effects as applied to key distillation, and we propose a novel adaptive real-time selection algorithm which, by leveraging the turbulence of the channel as a resource, extends the feasibility of QKD to new noise thresholds. By using a full-fledged software for classical processing tailored for the considered application scenario, the obtained results are analyzed and validated, showing that quantum information security can be ensured in realistic conditions with free-space quantum links
    corecore