1,535 research outputs found

    The Integration of Connectionism and First-Order Knowledge Representation and Reasoning as a Challenge for Artificial Intelligence

    Get PDF
    Intelligent systems based on first-order logic on the one hand, and on artificial neural networks (also called connectionist systems) on the other, differ substantially. It would be very desirable to combine the robust neural networking machinery with symbolic knowledge representation and reasoning paradigms like logic programming in such a way that the strengths of either paradigm will be retained. Current state-of-the-art research, however, fails by far to achieve this ultimate goal. As one of the main obstacles to be overcome we perceive the question how symbolic knowledge can be encoded by means of connectionist systems: Satisfactory answers to this will naturally lead the way to knowledge extraction algorithms and to integrated neural-symbolic systems.Comment: In Proceedings of INFORMATION'2004, Tokyo, Japan, to appear. 12 page

    An Upper Bound on the Complexity of Recognizable Tree Languages

    Get PDF
    The third author noticed in his 1992 PhD Thesis [Sim92] that every regular tree language of infinite trees is in a class (D_n(Σ0_2))\Game (D\_n({\bf\Sigma}^0\_2)) for some natural number n1n\geq 1, where \Game is the game quantifier. We first give a detailed exposition of this result. Next, using an embedding of the Wadge hierarchy of non self-dual Borel subsets of the Cantor space 2ω2^\omega into the class Δ1_2{\bf\Delta}^1\_2, and the notions of Wadge degree and Veblen function, we argue that this upper bound on the topological complexity of regular tree languages is much better than the usual Δ1_2{\bf\Delta}^1\_2

    Towards a Systematic Account of Different Semantics for Logic Programs

    Get PDF
    In [Hitzler and Wendt 2002, 2005], a new methodology has been proposed which allows to derive uniform characterizations of different declarative semantics for logic programs with negation. One result from this work is that the well-founded semantics can formally be understood as a stratified version of the Fitting (or Kripke-Kleene) semantics. The constructions leading to this result, however, show a certain asymmetry which is not readily understood. We will study this situation here with the result that we will obtain a coherent picture of relations between different semantics for normal logic programs.Comment: 20 page

    On variables with few occurrences in conjunctive normal forms

    Full text link
    We consider the question of the existence of variables with few occurrences in boolean conjunctive normal forms (clause-sets). Let mvd(F) for a clause-set F denote the minimal variable-degree, the minimum of the number of occurrences of variables. Our main result is an upper bound mvd(F) <= nM(surp(F)) <= surp(F) + 1 + log_2(surp(F)) for lean clause-sets F in dependency on the surplus surp(F). - Lean clause-sets, defined as having no non-trivial autarkies, generalise minimally unsatisfiable clause-sets. - For the surplus we have surp(F) <= delta(F) = c(F) - n(F), using the deficiency delta(F) of clause-sets, the difference between the number of clauses and the number of variables. - nM(k) is the k-th "non-Mersenne" number, skipping in the sequence of natural numbers all numbers of the form 2^n - 1. We conjecture that this bound is nearly precise for minimally unsatisfiable clause-sets. As an application of the upper bound we obtain that (arbitrary!) clause-sets F with mvd(F) > nM(surp(F)) must have a non-trivial autarky (so clauses can be removed satisfiability-equivalently by an assignment satisfying some clauses and not touching the other clauses). It is open whether such an autarky can be found in polynomial time. As a future application we discuss the classification of minimally unsatisfiable clause-sets depending on the deficiency.Comment: 14 pages. Revision contains more explanations, and more information regarding the sharpness of the boun

    A Coverage Criterion for Spaced Seeds and its Applications to Support Vector Machine String Kernels and k-Mer Distances

    Get PDF
    Spaced seeds have been recently shown to not only detect more alignments, but also to give a more accurate measure of phylogenetic distances (Boden et al., 2013, Horwege et al., 2014, Leimeister et al., 2014), and to provide a lower misclassification rate when used with Support Vector Machines (SVMs) (On-odera and Shibuya, 2013), We confirm by independent experiments these two results, and propose in this article to use a coverage criterion (Benson and Mak, 2008, Martin, 2013, Martin and No{\'e}, 2014), to measure the seed efficiency in both cases in order to design better seed patterns. We show first how this coverage criterion can be directly measured by a full automaton-based approach. We then illustrate how this criterion performs when compared with two other criteria frequently used, namely the single-hit and multiple-hit criteria, through correlation coefficients with the correct classification/the true distance. At the end, for alignment-free distances, we propose an extension by adopting the coverage criterion, show how it performs, and indicate how it can be efficiently computed.Comment: http://online.liebertpub.com/doi/abs/10.1089/cmb.2014.017
    corecore