66,971 research outputs found
DNA-coated Functional Oil Droplets
Many industrial soft materials often include oil-in-water (O/W) emulsions at
the core of their formulations. By using tuneable interface stabilizing agents,
such emulsions can self-assemble into complex structures. DNA has been used for
decades as a thermoresponsive highly specific binding agent between hard and,
recently, soft colloids. Up until now, emulsion droplets functionalized with
DNA had relatively low coating densities and were expensive to scale up. Here a
general O/W DNA-coating method using functional non-ionic amphiphilic block
copolymers, both diblock and triblock, is presented. The hydrophilic
polyethylene glycol ends of the surfactants are functionalized with azides,
allowing for efficient, dense and controlled coupling of dibenzocyclooctane
functionalized DNA to the polymers through a strain-promoted alkyne-azide click
reaction. The protocol is readily scalable due to the triblock's commercial
availability. Different production methods (ultrasonication, microfluidics and
membrane emulsification) are used with different oils (hexadecane and silicone
oil) to produce functional droplets in various size ranges (sub-micron, and ), showcasing the generality of
the protocol. Thermoreversible sub-micron emulsion gels, hierarchical
"raspberry" droplets and controlled droplet release from a flat DNA-coated
surface are demonstrated. The emulsion stability and polydispersity is
evaluated using dynamic light scattering and optical microscopy. The generality
and simplicity of the method opens up new applications in soft matter and
biotechnological research and industrial advances.Comment: 7 pages, 2 figures, 1 tabl
Applications of Graphene Quantum Dots in Biomedical Sensors
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.DFG, 428780268, Biomimetische Rezeptoren auf NanoMIP-Basis zur Virenerkennung und -entfernung mittels integrierter Ansätz
Gas Biosensor Arrays Based on Single-Stranded DNA-Functionalized Single-Walled Carbon Nanotubes for the Detection of Volatile Organic Compound Biomarkers Released by Huanglongbing Disease-Infected Citrus Trees.
Volatile organic compounds (VOCs) released by plants are closely associated with plant metabolism and can serve as biomarkers for disease diagnosis. Huanglongbing (HLB), also known as citrus greening or yellow shoot disease, is a lethal threat to the multi-billion-dollar citrus industry. Early detection of HLB is vital for removal of susceptible citrus trees and containment of the disease. Gas sensors are applied to monitor the air quality or toxic gases owing to their low-cost fabrication, smooth operation, and possible miniaturization. Here, we report on the development, characterization, and application of electrical biosensor arrays based on single-walled carbon nanotubes (SWNTs) decorated with single-stranded DNA (ssDNA) for the detection of four VOCs-ethylhexanol, linalool, tetradecene, and phenylacetaldehyde-that serve as secondary biomarkers for detection of infected citrus trees during the asymptomatic stage. SWNTs were noncovalently functionalized with ssDNA using π-π interaction between the nucleotide and sidewall of SWNTs. The resulting ssDNA-SWNT hybrid structure and device properties were investigated using Raman spectroscopy, ultraviolet (UV) spectroscopy, and electrical measurements. To monitor changes in the four VOCs, gas biosensor arrays consisting of bare SWNTs before and after being decorated with different ssDNA were employed to determine the different concentrations of the four VOCs. The data was processed using principal component analysis (PCA) and neural net fitting (NNF)
Programmable multimetallic linear nanoassemblies of ruthenium–DNA conjugates
A new ruthenium–DNA conjugates family was synthesized, made up of a ruthenium complex bound to one or two identical DNA strands of 14–58 nucleotides. The formation of controlled linear nanoassemblies containing one to seven ruthenium complexes is described
Electrically Guided DNA Immobilization and Multiplexed DNA Detection with Nanoporous Gold Electrodes.
Molecular diagnostics have significantly advanced the early detection of diseases, where the electrochemical sensing of biomarkers (e.g., DNA, RNA, proteins) using multiple electrode arrays (MEAs) has shown considerable promise. Nanostructuring the electrode surface results in higher surface coverage of capture probes and more favorable orientation, as well as transport phenomena unique to nanoscale, ultimately leading to enhanced sensor performance. The central goal of this study is to investigate the influence of electrode nanostructure on electrically-guided immobilization of DNA probes for nucleic acid detection in a multiplexed format. To that end, we used nanoporous gold (np-Au) electrodes that reduced the limit of detection (LOD) for DNA targets by two orders of magnitude compared to their planar counterparts, where the LOD was further improved by an additional order of magnitude after reducing the electrode diameter. The reduced electrode diameter also made it possible to create a np-Au MEA encapsulated in a microfluidic channel. The electro-grafting reduced the necessary incubation time to immobilize DNA probes into the porous electrodes down to 10 min (25-fold reduction compared to passive immobilization) and allowed for grafting a different DNA probe sequence onto each electrode in the array. The resulting platform was successfully used for the multiplexed detection of three different biomarker genes relevant to breast cancer diagnosis
Exploiting double exchange Diels-Alder cycloadditions for immobilization of peptide nucleic acids on gold nanoparticles
The generation of PNA-decorated gold nanoparticles (AuNPs) has revealed to be more difficult as compared to the generation of DNA-functionalized ones. The less polar nature of this artificial nucleic acid system and the associated tendency of the neutral poly-amidic backbone to aspecifically adsorb onto the gold surface rather than forming a covalent bond through gold-thiol interaction, combined with the low solubility of PNAs itself, form the main limiting factors in the functionalization of AuNP. Here, we provide a convenient methodology that allows to easily conjugate PNAs to AuNP. Positively charged PNAs containing a masked furan moiety were immobilized via a double exchange Diels-Alder cycloaddition onto masked maleimide-functionalized AuNPs in a one-pot fashion. Conjugated PNA strands retain their ability to selectively hybridize with target DNA strands. Moreover, the duplexes resulting from hybridization can be detached through a retro-Diels-Alder reaction, thus allowing straightforward catch-and-release of specific nucleic acid targets
Ligation of anti-cancer drugs to self-assembling ultrashort peptides by click chemistry for localized therapy
Self-assembling ultrashort peptides from aliphatic amino acids were functionalized with platinum anti-cancer drugs by click chemistry. Oxaliplatin-derived hybrid peptide hydrogels with up to 40% drug loading were tested for localized breast cancer therapy. Stably injected gels showed significant tumor growth inhibition in mice and a better tolerance compared to the free platinum drug
- …
