7,085 research outputs found

    Initial Algebra Semantics for Cyclic Sharing Tree Structures

    Full text link
    Terms are a concise representation of tree structures. Since they can be naturally defined by an inductive type, they offer data structures in functional programming and mechanised reasoning with useful principles such as structural induction and structural recursion. However, for graphs or "tree-like" structures - trees involving cycles and sharing - it remains unclear what kind of inductive structures exists and how we can faithfully assign a term representation of them. In this paper we propose a simple term syntax for cyclic sharing structures that admits structural induction and recursion principles. We show that the obtained syntax is directly usable in the functional language Haskell and the proof assistant Agda, as well as ordinary data structures such as lists and trees. To achieve this goal, we use a categorical approach to initial algebra semantics in a presheaf category. That approach follows the line of Fiore, Plotkin and Turi's models of abstract syntax with variable binding

    Constraint Handling Rules with Binders, Patterns and Generic Quantification

    Full text link
    Constraint Handling Rules provide descriptions for constraint solvers. However, they fall short when those constraints specify some binding structure, like higher-rank types in a constraint-based type inference algorithm. In this paper, the term syntax of constraints is replaced by λ\lambda-tree syntax, in which binding is explicit; and a new ∇\nabla generic quantifier is introduced, which is used to create new fresh constants.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017 16 pages, LaTeX, no PDF figure

    A Lambda Term Representation Inspired by Linear Ordered Logic

    Get PDF
    We introduce a new nameless representation of lambda terms inspired by ordered logic. At a lambda abstraction, number and relative position of all occurrences of the bound variable are stored, and application carries the additional information where to cut the variable context into function and argument part. This way, complete information about free variable occurrence is available at each subterm without requiring a traversal, and environments can be kept exact such that they only assign values to variables that actually occur in the associated term. Our approach avoids space leaks in interpreters that build function closures. In this article, we prove correctness of the new representation and present an experimental evaluation of its performance in a proof checker for the Edinburgh Logical Framework. Keywords: representation of binders, explicit substitutions, ordered contexts, space leaks, Logical Framework.Comment: In Proceedings LFMTP 2011, arXiv:1110.668
    • …
    corecore