2,603,204 research outputs found
On relating functional modeling approaches: abstracting functional models from behavioral models
This paper presents a survey of functional modeling approaches and describes a strategy to establish functional knowledge exchange between them. This survey is focused on a comparison of function meanings and representations. It is argued that functions represented as input-output flow transformations correspond to behaviors in the approaches that characterize functions as intended behaviors. Based on this result a strategy is presented to relate the different meanings of function between the approaches, establishing functional knowledge exchange between them. It is shown that this strategy is able to preserve more functional information than the functional knowledge exchange methodology of Kitamura, Mizoguchi, and co-workers. The strategy proposed here consists of two steps. In step one, operation-on-flow functions are translated into behaviors. In step two, intended behavior functions are derived from behaviors. The two-step strategy and its benefits are demonstrated by relating functional models of a power screwdriver between methodologies
Generalized Functional Additive Mixed Models
We propose a comprehensive framework for additive regression models for
non-Gaussian functional responses, allowing for multiple (partially) nested or
crossed functional random effects with flexible correlation structures for,
e.g., spatial, temporal, or longitudinal functional data as well as linear and
nonlinear effects of functional and scalar covariates that may vary smoothly
over the index of the functional response. Our implementation handles
functional responses from any exponential family distribution as well as many
others like Beta- or scaled non-central -distributions. Development is
motivated by and evaluated on an application to large-scale longitudinal
feeding records of pigs. Results in extensive simulation studies as well as
replications of two previously published simulation studies for generalized
functional mixed models demonstrate the good performance of our proposal. The
approach is implemented in well-documented open source software in the "pffr()"
function in R-package "refund"
Statistical inference in compound functional models
We consider a general nonparametric regression model called the compound
model. It includes, as special cases, sparse additive regression and
nonparametric (or linear) regression with many covariates but possibly a small
number of relevant covariates. The compound model is characterized by three
main parameters: the structure parameter describing the "macroscopic" form of
the compound function, the "microscopic" sparsity parameter indicating the
maximal number of relevant covariates in each component and the usual
smoothness parameter corresponding to the complexity of the members of the
compound. We find non-asymptotic minimax rate of convergence of estimators in
such a model as a function of these three parameters. We also show that this
rate can be attained in an adaptive way
Fast matrix computations for functional additive models
It is common in functional data analysis to look at a set of related
functions: a set of learning curves, a set of brain signals, a set of spatial
maps, etc. One way to express relatedness is through an additive model, whereby
each individual function is assumed to be a variation
around some shared mean . Gaussian processes provide an elegant way of
constructing such additive models, but suffer from computational difficulties
arising from the matrix operations that need to be performed. Recently Heersink
& Furrer have shown that functional additive model give rise to covariance
matrices that have a specific form they called quasi-Kronecker (QK), whose
inverses are relatively tractable. We show that under additional assumptions
the two-level additive model leads to a class of matrices we call restricted
quasi-Kronecker, which enjoy many interesting properties. In particular, we
formulate matrix factorisations whose complexity scales only linearly in the
number of functions in latent field, an enormous improvement over the cubic
scaling of na\"ive approaches. We describe how to leverage the properties of
rQK matrices for inference in Latent Gaussian Models
- …
