2,603,204 research outputs found

    On relating functional modeling approaches: abstracting functional models from behavioral models

    Get PDF
    This paper presents a survey of functional modeling approaches and describes a strategy to establish functional knowledge exchange between them. This survey is focused on a comparison of function meanings and representations. It is argued that functions represented as input-output flow transformations correspond to behaviors in the approaches that characterize functions as intended behaviors. Based on this result a strategy is presented to relate the different meanings of function between the approaches, establishing functional knowledge exchange between them. It is shown that this strategy is able to preserve more functional information than the functional knowledge exchange methodology of Kitamura, Mizoguchi, and co-workers. The strategy proposed here consists of two steps. In step one, operation-on-flow functions are translated into behaviors. In step two, intended behavior functions are derived from behaviors. The two-step strategy and its benefits are demonstrated by relating functional models of a power screwdriver between methodologies

    Generalized Functional Additive Mixed Models

    Full text link
    We propose a comprehensive framework for additive regression models for non-Gaussian functional responses, allowing for multiple (partially) nested or crossed functional random effects with flexible correlation structures for, e.g., spatial, temporal, or longitudinal functional data as well as linear and nonlinear effects of functional and scalar covariates that may vary smoothly over the index of the functional response. Our implementation handles functional responses from any exponential family distribution as well as many others like Beta- or scaled non-central tt-distributions. Development is motivated by and evaluated on an application to large-scale longitudinal feeding records of pigs. Results in extensive simulation studies as well as replications of two previously published simulation studies for generalized functional mixed models demonstrate the good performance of our proposal. The approach is implemented in well-documented open source software in the "pffr()" function in R-package "refund"

    Statistical inference in compound functional models

    Get PDF
    We consider a general nonparametric regression model called the compound model. It includes, as special cases, sparse additive regression and nonparametric (or linear) regression with many covariates but possibly a small number of relevant covariates. The compound model is characterized by three main parameters: the structure parameter describing the "macroscopic" form of the compound function, the "microscopic" sparsity parameter indicating the maximal number of relevant covariates in each component and the usual smoothness parameter corresponding to the complexity of the members of the compound. We find non-asymptotic minimax rate of convergence of estimators in such a model as a function of these three parameters. We also show that this rate can be attained in an adaptive way

    Fast matrix computations for functional additive models

    Full text link
    It is common in functional data analysis to look at a set of related functions: a set of learning curves, a set of brain signals, a set of spatial maps, etc. One way to express relatedness is through an additive model, whereby each individual function gi(x)g_{i}\left(x\right) is assumed to be a variation around some shared mean f(x)f(x). Gaussian processes provide an elegant way of constructing such additive models, but suffer from computational difficulties arising from the matrix operations that need to be performed. Recently Heersink & Furrer have shown that functional additive model give rise to covariance matrices that have a specific form they called quasi-Kronecker (QK), whose inverses are relatively tractable. We show that under additional assumptions the two-level additive model leads to a class of matrices we call restricted quasi-Kronecker, which enjoy many interesting properties. In particular, we formulate matrix factorisations whose complexity scales only linearly in the number of functions in latent field, an enormous improvement over the cubic scaling of na\"ive approaches. We describe how to leverage the properties of rQK matrices for inference in Latent Gaussian Models
    corecore