24,066 research outputs found
Recommended from our members
Lipid and Protein Transfer between Nanolipoprotein Particles and Supported Lipid Bilayers.
A nanolipoprotein particle (NLP) is a lipid bilayer disc stabilized by two amphipathic "scaffold" apolipoproteins. It has been most notably utilized as a tool for solubilizing a variety of membrane proteins while preserving structural and functional properties. Transfer of functional proteins from NLPs into model membrane systems such as supported lipid bilayers (SLBs) would enable new opportunities, for example, two-dimensional protein crystallization and studies on protein-protein interactions. This work used fluorescence microscopy and atomic force microscopy to investigate the interaction between NLPs and SLBs. When incubated with SLBs, NLPs were found to spontaneously deliver lipid and protein cargo. The impact of membrane composition on lipid exchange was explored, revealing a positive correlation between the magnitude of lipid transfer and concentration of defects in the target SLB. Incorporation of lipids capable of binding specifically to polyhistidine tags encoded into the apolipoproteins also boosted transfer of NLP cargo. Optimal conditions for lipid and protein delivery from NLPs to SLBs are proposed based on interaction mechanisms
Recommended from our members
Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer's disease.
Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD), increasing risk and decreasing age of disease onset. Many studies have demonstrated the detrimental effects of apoE4 in varying cellular contexts. However, the underlying mechanisms explaining how apoE4 leads to cognitive decline are not fully understood. Recently, the combination of human induced pluripotent stem cell (hiPSC) modeling of neurological diseases in vitro and electrophysiological studies in vivo have begun to unravel the intersection between apoE4, neuronal subtype dysfunction or loss, subsequent network deficits, and eventual cognitive decline. In this review, we provide an overview of the literature describing apoE4's detrimental effects in the central nervous system (CNS), specifically focusing on its contribution to neuronal subtype dysfunction or loss. We focus on γ-aminobutyric acid (GABA)-expressing interneurons in the hippocampus, which are selectively vulnerable to apoE4-mediated neurotoxicity. Additionally, we discuss the importance of the GABAergic inhibitory network to proper cognitive function and how dysfunction of this network manifests in AD. Finally, we examine how apoE4-mediated GABAergic interneuron loss can lead to inhibitory network deficits and how this deficit results in cognitive decline. We propose the following working model: Aging and/or stress induces neuronal expression of apoE. GABAergic interneurons are selectively vulnerable to intracellularly produced apoE4, through a tau dependent mechanism, which leads to their dysfunction and eventual death. In turn, GABAergic interneuron loss causes hyperexcitability and dysregulation of neural networks in the hippocampus and cortex. This dysfunction results in learning, memory, and other cognitive deficits that are the central features of AD
White matter differences between healthy young ApoE4 carriers and non-carriers identified with tractography and support vector machines.
The apolipoprotein E4 (ApoE4) is an established risk factor for Alzheimer's disease (AD). Previous work has shown that this allele is associated with functional (fMRI) changes as well structural grey matter (GM) changes in healthy young, middle-aged and older subjects. Here, we assess the diffusion characteristics and the white matter (WM) tracts of healthy young (20-38 years) ApoE4 carriers and non-carriers. No significant differences in diffusion indices were found between young carriers (ApoE4+) and non-carriers (ApoE4-). There were also no significant differences between the groups in terms of normalised GM or WM volume. A feature selection algorithm (ReliefF) was used to select the most salient voxels from the diffusion data for subsequent classification with support vector machines (SVMs). SVMs were capable of classifying ApoE4 carrier and non-carrier groups with an extremely high level of accuracy. The top 500 voxels selected by ReliefF were then used as seeds for tractography which identified a WM network that included regions of the parietal lobe, the cingulum bundle and the dorsolateral frontal lobe. There was a non-significant decrease in volume of this WM network in the ApoE4 carrier group. Our results indicate that there are subtle WM differences between healthy young ApoE4 carriers and non-carriers and that the WM network identified may be particularly vulnerable to further degeneration in ApoE4 carriers as they enter middle and old age
Apolipoprotein E and Alzheimer’s disease: The influence of apolipoprotein E on amyloid- and other amyloidogenic proteins
Hepatitis C virus relies on lipoproteins for its life cycle
Hepatitis C virus (HCV) infects over 150 million people worldwide. In most cases, HCV infection becomes chronic causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. Viral persistence and pathogenesis are due to the ability of HCV to deregulate specific host processes, mainly lipid metabolism and innate immunity. In particular, HCV exploits the lipoprotein machineries for almost all steps of its life cycle. The aim of this review is to summarize current knowledge concerning the interplay between HCV and lipoprotein metabolism. We discuss the role played by members of lipoproteins in HCV entry, replication and virion production
Phylogenetic differences in content and intensity of periodic proteins
Many proteins exhibit sequence periodicity, often correlated with a visible structural periodicity. The statistical significance of such periodicity can be assessed by means of a chi-square-based test, with significance thresholds being calculated from shuffled sequences. Comparison of the complete proteomes of 45 species reveals striking differences in the proportion of periodic proteins and the intensity of the most significant periodicities. Eukaryotes tend to have a higher proportion of periodic proteins than eubacteria, which in turn tend to have more than archaea. The intensity of periodicity in the most periodic proteins is also greatest in eukaryotes. By contrast, the relatively small group of periodic proteins in archaea also tend to be weakly periodic compared to those of eukaryotes and eubacteria. Exceptions to this general rule are found in those prokaryotes with multicellular life-cycle phases, e.g. Methanosarcina sps. or Anabaena sps., which have more periodicities than prokaryotes in general, and in unicellular eukaryotes, which have fewer than multicellular eukaryotes. The distribution of significantly periodic proteins in eukaryotes is over a wide range of period lengths, whereas prokaryotic proteins typically have a more limited set of period lengths. This is further investigated by repeating the analysis on the NRL-3D database of proteins of solved structure. Some short range periodicities are explicable in terms of basic secondary structure, e.g. alpha helices, while middle range periodicities are frequently found to consist of known short Pfam domains, e.g. leucine-rich repeats, tetratricopeptides or armadillo domains. However, not all can be explained in this way
Alzheimer's disease and HIV associated dementia related genes: I. location and function.
Alzheimer's disease (AD), the most common cause of dementia, has few clinical similarities to HIV-1-associated dementia (HAD). However, genes were identified related among these dementias. Discovering correlations between gene function, expression, and structure in the human genome continues to aid in understanding the similarities between pathogenesis of these two dementing disorders. The current work attempts to identify relationships between these dementias in spite of their clinical differences, based on genomic structure, function, and expression. In this comparative study, the NCBI Entrez Genome Database is used to detect these relationships. This approach serves as a model for future diagnosis and treatment in the clinical arena as well as suggesting parallel pathways of disease mechanisms. Identifying a correlation among expression, structure, and function of genes involved in pathogenesis of these dementing disorders, may assist to understand better their interaction with each other and the human genome
- …
