1,193,197 research outputs found
Climate change may have minor impact on zooplankton functional diversity in the Mediterranean Sea
Aim
To assess the impact of climate change on the functional diversity of marine zooplankton communities.
Location
The Mediterranean Sea.
Methods
We used the functional traits and geographic distributions of 106 copepod species to estimate the zooplankton functional diversity of Mediterranean surface assemblages for the 1965–1994 and 2069–2098 periods. Multiple environmental niche models were trained at the global scale to project the species habitat suitability in the Mediterranean Sea and assess their sensitivity to climate change predicted by several scenarios. Simultaneously, the species traits were used to compute a functional dendrogram from which we identified seven functional groups and estimated functional diversity through Faith's index. We compared the measured functional diversity to the one originated from null models to test if changes in functional diversity were solely driven by changes in species richness.
Results
All but three of the 106 species presented range contractions of varying intensity. A relatively low decrease of species richness (−7.42 on average) is predicted for 97% of the basin, with higher losses in the eastern regions. Relative sensitivity to climate change is not clustered in functional space and does not significantly vary across the seven copepod functional groups defined. Changes in functional diversity follow the same pattern and are not different from those that can be expected from changes in richness alone.
Main conclusions
Climate change is not expected to alter copepod functional traits distribution in the Mediterranean Sea, as the most and the least sensitive species are functionally redundant. Such redundancy should buffer the loss of ecosystem functions in Mediterranean zooplankton assemblages induced by climate change. Because the most negatively impacted species are affiliated to temperate regimes and share Atlantic biogeographic origins, our results are in line with the hypothesis of increasingly more tropical Mediterranean communities
A note on reliability estimation of functionally diverse systems
It has been argued that functional diversity might be a plausible means of claiming independence of failures between two versions of a system. We present a model of functional diversity, in the spirit of earlier models of diversity such as those of Eckhardt and Lee, and Hughes. In terms of the model, we show that the claims for independence between functionally diverse systems seem rather unrealistic. Instead, it seems likely that functionally diverse systems will exhibit positively correlated failures, and thus will be less reliable than an assumption of independence would suggest. The result does not, of course, suggest that functional diversity is not worthwhile; instead, it places upon the evaluator of such a system the onus to estimate the degree of dependence so as to evaluate the reliability of the system
A generalized framework for analyzing taxonomic, phylogenetic, and functional community structure based on presence-absence data
Community structure as summarized by presence–absence data is often evaluated via diversity measures by incorporating taxonomic, phylogenetic and functional information on the constituting species. Most commonly, various dissimilarity coefficients are used to express these aspects simultaneously such that the results are not comparable due to the lack of common conceptual basis behind index definitions. A new framework is needed which allows such comparisons, thus facilitating evaluation of the importance of the three sources of extra information in relation to conventional species-based representations. We define taxonomic, phylogenetic and functional beta diversity of species assemblages based on the generalized Jaccard dissimilarity index. This coefficient does not give equal weight to species, because traditional site dissimilarities are lowered by taking into account the taxonomic, phylogenetic or functional similarity of differential species in one site to the species in the other. These, together with the traditional, taxon- (species-) based beta diversity are decomposed into two additive fractions, one due to taxonomic, phylogenetic or functional excess and the other to replacement. In addition to numerical results, taxonomic, phylogenetic and functional community structure is visualized by 2D simplex or ternary plots. Redundancy with respect to taxon-based structure is expressed in terms of centroid distances between point clouds in these diagrams. The approach is illustrated by examples coming from vegetation surveys representing different ecological conditions. We found that beta diversity decreases in the following order: taxon-based, taxonomic (Linnaean), phylogenetic and functional. Therefore, we put forward the beta-redundancy hypothesis suggesting that this ordering may be most often the case in ecological communities, and discuss potential reasons and possible exceptions to this supposed rule. Whereas the pattern of change in diversity may be indicative of fundamental features of the particular community being studied, the effect of the choice of functional traits—a more or less subjective element of the framework—remains to be investigated
High functional diversity is related to high nitrogen availability in a deciduous forest - evidence from a functional trait approach
The current study tested the assumption that floristic and functional diversity patterns are negatively related to soil nitrogen content. We analyzed 20 plots with soil N-contents ranging from 0.63% to 1.06% in a deciduous forest near Munich (Germany). To describe species adaptation strategies to different nitrogen availabilities, we used a plant functional type (PFT) approach. Each identified PFT represents one realized adaptation strategy to the current environment. These were correlated, next to plant species richness and evenness, to soil nitrogen contents. We found that N-efficient species were typical for low soil nitrogen contents, while N-requiring species occur at high N-contents. In contrast to our initial hypotheses, floristic and functional diversity measures (number of PFTs) were positively related to nitrogen content in the soil. Every functional group has its own adaptation to the prevailing environmental conditions; in consequence, these functional groups can co-exist but do not out-compete one another. The increased number of functional groups at high N-contents leads to increased species richness. Hence, for explaining diversity patterns we need to consider species groups representing different adaptations to the current environmental conditions. Such co-existing ecological strategies may even overcome the importance of competition in their effect on biodiversity
Recommended from our members
Climate and plant community diversity in space and time.
Climate strongly shapes plant diversity over large spatial scales, with relatively warm and wet (benign, productive) regions supporting greater numbers of species. Unresolved aspects of this relationship include what causes it, whether it permeates to community diversity at smaller spatial scales, whether it is accompanied by patterns in functional and phylogenetic diversity as some hypotheses predict, and whether it is paralleled by climate-driven changes in diversity over time. Here, studies of Californian plants are reviewed and new analyses are conducted to synthesize climate-diversity relationships in space and time. Across spatial scales and organizational levels, plant diversity is maximized in more productive (wetter) climates, and these consistent spatial relationships are mirrored in losses of taxonomic, functional, and phylogenetic diversity over time during a recent climatic drying trend. These results support the tolerance and climatic niche conservatism hypotheses for climate-diversity relationships, and suggest there is some predictability to future changes in diversity in water-limited climates
Congruence between breeding and wintering biodiversity hotspots: A case study in farmlands of Western Poland
Farmland landscapes are recognized as important ecosystems, not only for their rich biodiversity but equally so for the human beings who live and work in these places. However, biodiversity varies among sites (spatial change) and among seasons (temporal change). In this work, we tested the hypothesis that bird diversity hotspots distribution for breeding is congruent with bird diversity hotspots for wintering season, focusing also the representation of protected areas for the conservation of local hotspots. We proposed a framework based on the use of species richness, functional diversity, and evolutionary distinctiveness to characterize avian communities. Although our findings show that the spatial distribution of local bird hotspots differed slightly between seasons, the protected areas’ representation was similar in both seasons. Protected areas covered 65% of the most important zones for breeding and 71% for the wintering season in the farmland studied. Functional diversity showed similar patterns as did bird species richness, but this measure can be most effective for highlighting differences on bird community composition. Evolutionary distinctiveness was less congruent with species richness and functional diversity, among seasons. Our findings suggest that inter-seasonal spatial congruence of local hotspots can be considered as suitable areas upon which to concentrate greater conservation efforts. However, even considering the relative congruence of avian diversity metrics at a local spatial scale, simultaneous analysis of protected areas while inter-seasonally considering hotspots, can provide a more complete representation of ecosystems for assessing the conservation status and designating priority areas
Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain.
The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500-2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change
Functional diversity of motoneurons in the oculomotor system
Extraocular muscles contain two types of muscle fibers according to their innervation pattern: singly innervated muscle fibers (SIFs), similar to most skeletal muscle fibers, and multiply innervated muscle fibers (MIFs). Morphological studies have revealed that SIF and MIF motoneurons are segregated anatomically and receive different proportions of certain afferents, suggesting that while SIF motoneurons would participate in the whole repertoire of eye movements, MIF motoneurons would contribute only to slow eye movements and fixations. We have tested that proposal by performing single-unit recordings, in alert behaving cats, of electrophysiologically identified MIF and SIF motoneurons in the abducens nucleus. Our results show that both types of motoneuron discharge in relation to eye position and velocity, displaying a tonic–phasic firing pattern for different types of eye movement (saccades, vestibulo-ocular reflex, vergence) and gaze-holding. However, MIF motoneurons presented an overall reduced firing rate compared with SIF motoneurons, and had significantly lower recruitment threshold and also lower eye position and velocity sensitivities. Accordingly, MIF motoneurons could control mainly gaze in the off-direction, when less force is needed, whereas SIF motoneurons would contribute to increase muscle tension progressively toward the on-direction as more force is required. Anatomically, MIF and SIF motoneurons distributed intermingled within the abducens nucleus, with MIF motoneurons being smaller and having a lesser somatic synaptic coverage. Our data demonstrate the functional participation of both MIF and SIF motoneurons in fixations and slow and phasic eye movements, although their discharge properties indicate a functional segregation.Ministerio de Ciencia, Innovación y Universidades – Fondo Europeo de Desarrollo Regional (BFU2015-64515-P)Junta de Andalucía (BIO-297
Effects of abandonment on plant diversity in seminatural grasslands along soil and climate gradients
Questions: What are the effects of abandonment on plant diversity in semi-natural grasslands? Do the effects of abandonment on taxonomic and functional diversity vary along environmental gradients of climate and soil? Location: West and mid-Norway. Methods: Plant composition was surveyed in 110 subplots of 4 m2 in 14 sites across grazed and abandoned semi-natural grasslands. Climate data were extracted and soil composition analysed. To reduce the number of explanatory variables and deal with collinearity, we performed PCA. Data on the plant species vegetative height (H), leaf dry matter content (LDMC), specific leaf area (SLA), seed mass (SM) and number of seeds per plant (SNP) for 175 species were extracted from the LEDA database. Measures of plant diversity (species richness, CWM of functional traits and functional diversity (evenness and range)) were calculated for each subplot. To estimate the effects of abandonment on plant diversity and examine how these effects are moderated by gradients in soil and climate, we fitted mixed models to the data including site as a random effect. Results: Species richness in the subplots was lower in abandoned semi-natural grasslands, especially on more calcareous soils. CWM H, LDMC and SM were higher in abandoned semi-natural grasslands. CWM LDMC was only higher in the driest subplots. The ranges in H, SLA and SM, as well as evenness in LDMC were also higher in abandoned semi-natural grasslands, but the range in LDMC was lower. Conclusions: It is important to assess both taxonomic and functional diversity to understand ecosystem processes. The species pool in ecosystems influenced by a long history of intermediate grazing includes a high proportion of low stature, grazing-tolerant plant species. Abandonment of extensive land-use practices will cause a decline in taxonomic diversity (plant species richness) in such systems due to increased abundance of plants with high stature that outcompete the lower, grazing-tolerant plants. This process is predominant especially if moisture, soil fertility and pH are at intermediate levels. Changes in species communities due to abandonment will also influence ecosystem functioning, such as nutrient turnover and fodder production resilience. (Résumé d'auteur
- …
