2 research outputs found

    Functional and Performance Analysis of Network-on-Chips Using Actor-based Modeling and Formal Verification

    Get PDF
    Network on Chip (NoC) has emerged as a promising architecture paradigmfor todays many-core systems. As complexity grows in NoCs, functional verificationand performance prediction in the early stages of the design process are suggestedas ways to reduce the fabrication cost. Formal methods have gained moreattention as alternative ways for analyzing NoC designs. In this paper we propose amethod to model different characteristics of the system, and also verify various functionaland performance properties by generating the full state space of the model fordifferent scenarios. We present a formal model for two-dimensional mesh GloballyAsynchronous Locally Synchronous (GALS) NoCs with four-phase handshakecommunication protocol, using the actor-based modeling language Rebeca. Functionaland timing behaviors, routing algorithm and communication protocol are capturedin the model. Deadlock freedom, message arrival, and end-to-end packet latencyare checked. In order to analyze large NoCs we propose a scalable approachbased on compositional verification for estimating maximum end-to-end packet latency.The compositional approach is specific for the XY-routing algorithm. Resultsof verification are compared and matched to simulation results of HSPICE using32nm technology

    Prototyping Formal System Models with Active Objects

    Full text link
    We propose active object languages as a development tool for formal system models of distributed systems. Additionally to a formalization based on a term rewriting system, we use established Software Engineering concepts, including software product lines and object orientation that come with extensive tool support. We illustrate our modeling approach by prototyping a weak memory model. The resulting executable model is modular and has clear interfaces between communicating participants through object-oriented modeling. Relaxations of the basic memory model are expressed as self-contained variants of a software product line. As a modeling language we use the formal active object language ABS which comes with an extensive tool set. This permits rapid formalization of core ideas, early validity checks in terms of formal invariant proofs, and debugging support by executing test runs. Hence, our approach supports the prototyping of formal system models with early feedback.Comment: In Proceedings ICE 2018, arXiv:1810.0205
    corecore