25,557 research outputs found
Interhemispheric transfer and the processing of foveally presented stimuli
A review of the literature shows that the LVF and the RVF do not overlap. This means that foveal representations of words are effectively split and that interhemispheric communication is needed to recognise centrally presented words
The effects of hemodynamic lag on functional connectivity and behavior after stroke
Stroke disrupts the brain's vascular supply, not only within but also outside areas of infarction. We investigated temporal delays (lag) in resting state functional magnetic resonance imaging signals in 130 stroke patients scanned two weeks, three months and 12 months post stroke onset. Thirty controls were scanned twice at an interval of three months. Hemodynamic lag was determined using cross-correlation with the global gray matter signal. Behavioral performance in multiple domains was assessed in all patients. Regional cerebral blood flow and carotid patency were assessed in subsets of the cohort using arterial spin labeling and carotid Doppler ultrasonography. Significant hemodynamic lag was observed in 30% of stroke patients sub-acutely. Approximately 10% of patients showed lag at one-year post-stroke. Hemodynamic lag corresponded to gross aberrancy in functional connectivity measures, performance deficits in multiple domains and local and global perfusion deficits. Correcting for lag partially normalized abnormalities in measured functional connectivity. Yet post-stroke FC-behavior relationships in the motor and attention systems persisted even after hemodynamic delays were corrected. Resting state fMRI can reliably identify areas of hemodynamic delay following stroke. Our data reveal that hemodynamic delay is common sub-acutely, alters functional connectivity, and may be of clinical importance
Electrophysiological evidence for changes in attentional orienting and selection in functional somatic symptoms
Neurophysiology Objective: We investigated changes in attention mechanisms in people who report a high number of somatic symptoms which cannot be associated with a physical cause. Method: Based on scores on the Somatoform Disorder Questionnaire (SDQ-20; Nijenhuis et al., 1996) we compared two non-clinical groups, one with high symptoms on the SDQ-20 and a control group with low or no symptoms. We recorded EEG whilst participants performed an exogenous tactile attention task where they had to discriminate between tactile targets following a tactile cue to the same or opposite hand. Results: The neural marker of attentional orienting to the body, the Late Somatosensory Negativity (LSN), was diminished in the high symptoms group and attentional modulation of touch processing was prolonged at mid and enhanced at later latency stages in this group. Conclusion: These results confirm that attentional processes are altered in people with somatic symptoms, even in a non-clinical group. Furthermore, the observed pattern fits explanations of changes in prior beliefs or expectations leading to diminished amplitudes of the marker of attentional orienting to the body (i.e. the LSN) and enhanced attentional gain of touch processing. Significance: This study shows that high somatic symptoms are associated with neurocognitive attention changes
Neural Basis of Motivation Lateralizes with Motor Control
According to decades of research on affective motivation in the human brain, approach motivational states are subserved by the left hemisphere and avoidance states by the right hemisphere. Here we show that hemispheric specialization for motivation reverses with handedness. This covariation provides initial support for the Sword and Shield Hypothesis, according to which hemispheric laterality of affective motivation is causally linked to motor control for the dominant and non-dominant hands
Brain plasticity in aphasic patients: Intra- and inter-hemispheric reorganisation of the whole linguistic network probed by N150 and N350 components
The present study examined linguistic plastic reorganization of language through Evoked Potentials
in a group of 17 non-fluent aphasic patients who had suffered left perisylvian focal lesions, and
showed a good linguistic recovery. Language reorganisation was probed with three linguistic
tasks (Phonological, Semantic, Orthographic), the early word recognition potential (N150) and the
later phonological-related component (N350). Results showed the typical left-lateralised posterior
N150 in healthy controls (source: left Fusiform Gyrus), that was bilateral (Semantic) or right sided
(Phonological task) in patients (sources: right Inferior/Middle Temporal and Fusiform Gyri). As regards
N350, controls revealed different intra- and inter-hemispheric linguistic activation across linguistic
tasks, whereas patients exhibited greater activity in left intact sites, anterior and posterior to the
damaged area, in all tasks (sources: Superior Frontal Gyri). A comprehensive neurofunctional model
is presented, describing how complete intra- and inter-hemispheric reorganisation of the linguistic
networks occurs after aphasic damage in the strategically dominant left perisylvian linguistic centres
Resolving Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations
Human brain anatomy and function display a combination of modular and
hierarchical organization, suggesting the importance of both cohesive
structures and variable resolutions in the facilitation of healthy cognitive
processes. However, tools to simultaneously probe these features of brain
architecture require further development. We propose and apply a set of methods
to extract cohesive structures in network representations of brain connectivity
using multi-resolution techniques. We employ a combination of soft
thresholding, windowed thresholding, and resolution in community detection,
that enable us to identify and isolate structures associated with different
weights. One such mesoscale structure is bipartivity, which quantifies the
extent to which the brain is divided into two partitions with high connectivity
between partitions and low connectivity within partitions. A second,
complementary mesoscale structure is modularity, which quantifies the extent to
which the brain is divided into multiple communities with strong connectivity
within each community and weak connectivity between communities. Our methods
lead to multi-resolution curves of these network diagnostics over a range of
spatial, geometric, and structural scales. For statistical comparison, we
contrast our results with those obtained for several benchmark null models. Our
work demonstrates that multi-resolution diagnostic curves capture complex
organizational profiles in weighted graphs. We apply these methods to the
identification of resolution-specific characteristics of healthy weighted graph
architecture and altered connectivity profiles in psychiatric disease.Comment: Comments welcom
An observational study of implicit motor imagery using laterality recognition of the hand after stroke
none4siObjective: To explore the relationship between laterality recognition after stroke and impairments in attention, 3D object rotation and functional ability. Design: Observational cross-sectional study. Setting: Acute care teaching hospital. Participants: Thirty-two acute and sub-acute people with stroke and 36 healthy, age-matched controls. Main outcome measures: Laterality recognition, attention and mental rotation of objects. Within the stroke group, the relationship between laterality recognition and functional ability, neglect, hemianopia and dyspraxia were further explored. Results: People with stroke were significantly less accurate (69% vs 80%) and showed delayed reaction times (3.0 vs 1.9 seconds) when determining the laterality of a pictured hand. Deficits either in accuracy or reaction times were seen in 53% of people with stroke. The accuracy of laterality recognition was associated with reduced functional ability (R2 = 0.21), less accurate mental rotation of objects (R2 = 0.20) and dyspraxia (p = 0.03). Conclusion: Implicit motor imagery is affected in a significant number of patients after stroke with these deficits related to lesions to the motor networks as well as other deficits seen after stroke. This research provides new insights into how laterality recognition is related to a number of other deficits after stroke, including the mental rotation of 3D objects, attention and dyspraxia. Further research is required to determine if treatment programmes can improve deficits in laterality recognition and impact functional outcomes after stroke.openAmesz, Sarah; Tessari, Alessia; Ottoboni, Giovanni; Marsden, JonAmesz, Sarah; Tessari, Alessia; Ottoboni, Giovanni; Marsden, Jo
Brain asymmetry and visual word recognition: do we have a split fovea?
In this chapter we discuss how the anatomical divide between the left and the right brain half has implications for visual word recognition. In particular, it introduces the need for massive interhemispheric communication. Unlike what was believed in the traditional view, it looks increasingly likely that interhemispheric integration is already needed from the very first stages of word processing, when the letter information is combined to activate stored word representations. Taking into account these insights not only improves our understanding of the neurophysiological and cognitive mechanisms of reading, it also gives us new ideas to look at individual differences in reading
Laterality of Eye Use by Bottlenose (Tursiops truncatus) and Rough-toothed (Steno bredanensis) Dolphins While Viewing Predictable and Unpredictable Stimuli
Laterality of eye use has been increasingly studied in cetaceans. Research supports that many cetacean species keep prey on the right side while feeding and preferentially view unfamiliar objects with the right eye. In contrast, the left eye has been used more by calves while in close proximity to their mothers. Despite some discrepancies across and within species, laterality of eye use generally indicates functional specialization of brain hemispheres in cetaceans. The present study aimed to examine laterality of eye use in bottlenose dolphins (Tursiops truncatus) and rough-toothed dolphins (Steno bredanensis) under managed care. Subjects were video-recorded through an underwater window while viewing two different stimuli, one predictable and static and the other unpredictable and moving. Bottlenose dolphins displayed an overall right-eye preference, especially while viewing the unpredictable, moving stimulus. Rough-toothed dolphins did not display eye preference while viewing stimuli. No significant correlations between degree of laterality and behavioral interest in the stimuli were found. Only for bottlenose dolphins were the degree of laterality and curiosity ratings correlated. This study extends research on cetacean lateralization to a species not extensively examined and to stimuli that varied in movement and degree of predictability. Further research is needed to make conclusions regarding lateralization in cetaceans
- …
