17,776 research outputs found

    The Graph Structure of Chebyshev Polynomials over Finite Fields and Applications

    Full text link
    We completely describe the functional graph associated to iterations of Chebyshev polynomials over finite fields. Then, we use our structural results to obtain estimates for the average rho length, average number of connected components and the expected value for the period and preperiod of iterating Chebyshev polynomials

    Tame Decompositions and Collisions

    Full text link
    A univariate polynomial f over a field is decomposable if f = g o h = g(h) for nonlinear polynomials g and h. It is intuitively clear that the decomposable polynomials form a small minority among all polynomials over a finite field. The tame case, where the characteristic p of Fq does not divide n = deg f, is fairly well-understood, and we have reasonable bounds on the number of decomposables of degree n. Nevertheless, no exact formula is known if nn has more than two prime factors. In order to count the decomposables, one wants to know, under a suitable normalization, the number of collisions, where essentially different (g, h) yield the same f. In the tame case, Ritt's Second Theorem classifies all 2-collisions. We introduce a normal form for multi-collisions of decompositions of arbitrary length with exact description of the (non)uniqueness of the parameters. We obtain an efficiently computable formula for the exact number of such collisions at degree n over a finite field of characteristic coprime to p. This leads to an algorithm for the exact number of decomposable polynomials at degree n over a finite field Fq in the tame case

    The Tensor Track, III

    Full text link
    We provide an informal up-to-date review of the tensor track approach to quantum gravity. In a long introduction we describe in simple terms the motivations for this approach. Then the many recent advances are summarized, with emphasis on some points (Gromov-Hausdorff limit, Loop vertex expansion, Osterwalder-Schrader positivity...) which, while important for the tensor track program, are not detailed in the usual quantum gravity literature. We list open questions in the conclusion and provide a rather extended bibliography.Comment: 53 pages, 6 figure

    Nonlocal, noncommutative diagrammatics and the linked cluster Theorems

    Get PDF
    Recent developments in quantum chemistry, perturbative quantum field theory, statistical physics or stochastic differential equations require the introduction of new families of Feynman-type diagrams. These new families arise in various ways. In some generalizations of the classical diagrams, the notion of Feynman propagator is extended to generalized propagators connecting more than two vertices of the graphs. In some others (introduced in the present article), the diagrams, associated to noncommuting product of operators inherit from the noncommutativity of the products extra graphical properties. The purpose of the present article is to introduce a general way of dealing with such diagrams. We prove in particular a "universal" linked cluster theorem and introduce, in the process, a Feynman-type "diagrammatics" that allows to handle simultaneously nonlocal (Coulomb-type) interactions, the generalized diagrams arising from the study of interacting systems (such as the ones where the ground state is not the vacuum but e.g. a vacuum perturbed by a magnetic or electric field, by impurities...) or Wightman fields (that is, expectation values of products of interacting fields). Our diagrammatics seems to be the first attempt to encode in a unified algebraic framework such a wide variety of situations. In the process, we promote two ideas. First, Feynman-type diagrammatics belong mathematically to the theory of linear forms on combinatorial Hopf algebras. Second, linked cluster-type theorems rely ultimately on M\"obius inversion on the partition lattice. The two theories should therefore be introduced and presented accordingl
    • …
    corecore