7,994 research outputs found

    Schema Independent Relational Learning

    Full text link
    Learning novel concepts and relations from relational databases is an important problem with many applications in database systems and machine learning. Relational learning algorithms learn the definition of a new relation in terms of existing relations in the database. Nevertheless, the same data set may be represented under different schemas for various reasons, such as efficiency, data quality, and usability. Unfortunately, the output of current relational learning algorithms tends to vary quite substantially over the choice of schema, both in terms of learning accuracy and efficiency. This variation complicates their off-the-shelf application. In this paper, we introduce and formalize the property of schema independence of relational learning algorithms, and study both the theoretical and empirical dependence of existing algorithms on the common class of (de) composition schema transformations. We study both sample-based learning algorithms, which learn from sets of labeled examples, and query-based algorithms, which learn by asking queries to an oracle. We prove that current relational learning algorithms are generally not schema independent. For query-based learning algorithms we show that the (de) composition transformations influence their query complexity. We propose Castor, a sample-based relational learning algorithm that achieves schema independence by leveraging data dependencies. We support the theoretical results with an empirical study that demonstrates the schema dependence/independence of several algorithms on existing benchmark and real-world datasets under (de) compositions

    Gradual Liquid Type Inference

    Full text link
    Liquid typing provides a decidable refinement inference mechanism that is convenient but subject to two major issues: (1) inference is global and requires top-level annotations, making it unsuitable for inference of modular code components and prohibiting its applicability to library code, and (2) inference failure results in obscure error messages. These difficulties seriously hamper the migration of existing code to use refinements. This paper shows that gradual liquid type inference---a novel combination of liquid inference and gradual refinement types---addresses both issues. Gradual refinement types, which support imprecise predicates that are optimistically interpreted, can be used in argument positions to constrain liquid inference so that the global inference process e effectively infers modular specifications usable for library components. Dually, when gradual refinements appear as the result of inference, they signal an inconsistency in the use of static refinements. Because liquid refinements are drawn from a nite set of predicates, in gradual liquid type inference we can enumerate the safe concretizations of each imprecise refinement, i.e. the static refinements that justify why a program is gradually well-typed. This enumeration is useful for static liquid type error explanation, since the safe concretizations exhibit all the potential inconsistencies that lead to static type errors. We develop the theory of gradual liquid type inference and explore its pragmatics in the setting of Liquid Haskell.Comment: To appear at OOPSLA 201

    Dynamics of Bound Magnon Pairs in the Quasi-One-Dimensional Frustrated Magnet LiCuVO_4

    Full text link
    We report on the dynamics of the spin-1/2 quasi-one-dimensional frustrated magnet LiCuVO4\mathrm{_4} measured by nuclear spin relaxation in high magnetic fields 10--34 T, in which the ground state has spin-density-wave order. The spin fluctuations in the paramagnetic phase exhibit striking anisotropy with respect to the magnetic field. The transverse excitation spectrum probed by 51^{51}V nuclei has an excitation gap, which increases with field. On the other hand, the gapless longitudinal fluctuations sensed by 7^7Li nuclei grow with lowering temperature, but tend to be suppressed with increasing field. Such anisotropic spin dynamics and its field dependence agree with the theoretical predictions and are ascribed to the formation of bound magnon pairs, a remarkable consequence of the frustration between ferromagnetic nearest neighbor and antiferromagnetic next-nearest-neighbor interactions.Comment: 7 pages, 6 figure
    • …
    corecore