555 research outputs found

    Remarks on the Cryptographic Primitive of Attribute-based Encryption

    Get PDF
    Attribute-based encryption (ABE) which allows users to encrypt and decrypt messages based on user attributes is a type of one-to-many encryption. Unlike the conventional one-to-one encryption which has no intention to exclude any partners of the intended receiver from obtaining the plaintext, an ABE system tries to exclude some unintended recipients from obtaining the plaintext whether they are partners of some intended recipients. We remark that this requirement for ABE is very hard to meet. An ABE system cannot truly exclude some unintended recipients from decryption because some users can exchange their decryption keys in order to maximize their own interests. The flaw discounts the importance of the cryptographic primitive.Comment: 9 pages, 4 figure

    AnonyControl: Control Cloud Data Anonymously with Multi-Authority Attribute-Based Encryption

    Full text link
    Cloud computing is a revolutionary computing paradigm which enables flexible, on-demand and low-cost usage of computing resources. However, those advantages, ironically, are the causes of security and privacy problems, which emerge because the data owned by different users are stored in some cloud servers instead of under their own control. To deal with security problems, various schemes based on the Attribute- Based Encryption (ABE) have been proposed recently. However, the privacy problem of cloud computing is yet to be solved. This paper presents an anonymous privilege control scheme AnonyControl to address the user and data privacy problem in a cloud. By using multiple authorities in cloud computing system, our proposed scheme achieves anonymous cloud data access, finegrained privilege control, and more importantly, tolerance to up to (N -2) authority compromise. Our security and performance analysis show that AnonyControl is both secure and efficient for cloud computing environment.Comment: 9 pages, 6 figures, 3 tables, conference, IEEE INFOCOM 201

    A Review on Secure Access to Cloud Storage by using ABE

    Get PDF
    Cloud computing is going to be very famous technology in IT enterprises. For an enterprise, the data stored is huge and it is very precious. All tasks are performed through networks. Hence, it becomes very important to have the secured use of data. In cloud computing, the most important concerns of security are data security and privacy. For access control, being one of the classic research topics, many schemes have been proposed and implemented. In this paper, various schemes for encryption that consist of Attribute based encryption (ABE) and its types KP-ABE, CP-ABE is explored. Public Key Encryption acts as the basic technique for ABE where it provides one to many encryptions, here, the private key of users & the cipher-text both rely on attributes such that, when the set of the attributes of users key matches set of attributes of cipher-text with its corresponding access policy, only then decryption is possible

    Cloud Security in Crypt Database Server Using Fine Grained Access Control

    Get PDF
    Information sharing in the cloud, powered by good patterns in cloud technology, is rising as a guaranteeing procedure for permitting users to advantageously access information. However, the growing number of enterprises and customers who stores their information in cloud servers is progressively challenging users’ privacy and the security of information. This paper concentrates on providing a dependable and secure cloud information sharing services that permits users dynamic access to their information. In order to achieve this, propose an effective, adaptable and flexible privacy preserving information policy with semantic security, by using Cipher text Policy Element Based Encryption (CP-EBE) consolidated with Character Based Encryption (CBE) systems. To ensure strong information sharing security, the policy succeeds in protecting the privacy of cloud users and supports efficient and secure dynamic operations, but not constrained to, file creation, user revocation. Security analysis demonstrates that the proposed policy is secure under the generic bi- linear group model in the random oracle model and enforces fine-grained access control, full collusion resistance and retrogressive secrecy. Furthermore, performance analysis and experimental results demonstrate that the overheads are as light as possible
    • …
    corecore