1,193 research outputs found

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    Combinatorial Assortment Optimization

    Full text link
    Assortment optimization refers to the problem of designing a slate of products to offer potential customers, such as stocking the shelves in a convenience store. The price of each product is fixed in advance, and a probabilistic choice function describes which product a customer will choose from any given subset. We introduce the combinatorial assortment problem, where each customer may select a bundle of products. We consider a model of consumer choice where the relative value of different bundles is described by a valuation function, while individual customers may differ in their absolute willingness to pay, and study the complexity of the resulting optimization problem. We show that any sub-polynomial approximation to the problem requires exponentially many demand queries when the valuation function is XOS, and that no FPTAS exists even for succinctly-representable submodular valuations. On the positive side, we show how to obtain constant approximations under a "well-priced" condition, where each product's price is sufficiently high. We also provide an exact algorithm for kk-additive valuations, and show how to extend our results to a learning setting where the seller must infer the customers' preferences from their purchasing behavior
    • …
    corecore