74 research outputs found

    Attention Gated Networks: Learning to Leverage Salient Regions in Medical Images

    Get PDF
    We propose a novel attention gate (AG) model for medical image analysis that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules when using convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN models such as VGG or U-Net architectures with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed AG models are evaluated on a variety of tasks, including medical image classification and segmentation. For classification, we demonstrate the use case of AGs in scan plane detection for fetal ultrasound screening. We show that the proposed attention mechanism can provide efficient object localisation while improving the overall prediction performance by reducing false positives. For segmentation, the proposed architecture is evaluated on two large 3D CT abdominal datasets with manual annotations for multiple organs. Experimental results show that AG models consistently improve the prediction performance of the base architectures across different datasets and training sizes while preserving computational efficiency. Moreover, AGs guide the model activations to be focused around salient regions, which provides better insights into how model predictions are made. The source code for the proposed AG models is publicly available.Comment: Accepted for Medical Image Analysis (Special Issue on Medical Imaging with Deep Learning). arXiv admin note: substantial text overlap with arXiv:1804.03999, arXiv:1804.0533

    Fully Automated Segmentation of the Left Ventricle in Magnetic Resonance Images

    Full text link
    Automatic and robust segmentation of the left ventricle (LV) in magnetic resonance images (MRI) has remained challenging for many decades. With the great success of deep learning in object detection and classification, the research focus of LV segmentation has changed to convolutional neural network (CNN) in recent years. However, LV segmentation is a pixel-level classification problem and its categories are intractable compared to object detection and classification. Although lots of CNN based methods have been proposed for LV segmentation, no robust and reproducible results are achieved yet. In this paper, we try to reproduce the CNN based LV segmentation methods with their disclosed codes and trained CNN models. Not surprisingly, the reproduced results are significantly worse than their claimed accuracies. We also proposed a fully automated LV segmentation method based on slope difference distribution (SDD) threshold selection to compare with the reproduced CNN methods. The proposed method achieved 95.44% DICE score on the test set of automated cardiac diagnosis challenge (ACDC) while the two compared CNN methods achieved 90.28% and 87.13% DICE scores. Our achieved accuracy is also higher than the best accuracy reported in the published literatures. The MATLAB codes of our proposed method are freely available on line
    • …
    corecore