40,058 research outputs found

    Fully Convolutional Multi-Class Multiple Instance Learning

    Full text link
    Multiple instance learning (MIL) can reduce the need for costly annotation in tasks such as semantic segmentation by weakening the required degree of supervision. We propose a novel MIL formulation of multi-class semantic segmentation learning by a fully convolutional network. In this setting, we seek to learn a semantic segmentation model from just weak image-level labels. The model is trained end-to-end to jointly optimize the representation while disambiguating the pixel-image label assignment. Fully convolutional training accepts inputs of any size, does not need object proposal pre-processing, and offers a pixelwise loss map for selecting latent instances. Our multi-class MIL loss exploits the further supervision given by images with multiple labels. We evaluate this approach through preliminary experiments on the PASCAL VOC segmentation challenge.Comment: in ICLR 201

    A Multi-scale Multiple Instance Video Description Network

    Full text link
    Generating natural language descriptions for in-the-wild videos is a challenging task. Most state-of-the-art methods for solving this problem borrow existing deep convolutional neural network (CNN) architectures (AlexNet, GoogLeNet) to extract a visual representation of the input video. However, these deep CNN architectures are designed for single-label centered-positioned object classification. While they generate strong semantic features, they have no inherent structure allowing them to detect multiple objects of different sizes and locations in the frame. Our paper tries to solve this problem by integrating the base CNN into several fully convolutional neural networks (FCNs) to form a multi-scale network that handles multiple receptive field sizes in the original image. FCNs, previously applied to image segmentation, can generate class heat-maps efficiently compared to sliding window mechanisms, and can easily handle multiple scales. To further handle the ambiguity over multiple objects and locations, we incorporate the Multiple Instance Learning mechanism (MIL) to consider objects in different positions and at different scales simultaneously. We integrate our multi-scale multi-instance architecture with a sequence-to-sequence recurrent neural network to generate sentence descriptions based on the visual representation. Ours is the first end-to-end trainable architecture that is capable of multi-scale region processing. Evaluation on a Youtube video dataset shows the advantage of our approach compared to the original single-scale whole frame CNN model. Our flexible and efficient architecture can potentially be extended to support other video processing tasks.Comment: ICCV15 workshop on Closing the Loop Between Vision and Languag

    Classifying and Segmenting Microscopy Images Using Convolutional Multiple Instance Learning

    Full text link
    Convolutional neural networks (CNN) have achieved state of the art performance on both classification and segmentation tasks. Applying CNNs to microscopy images is challenging due to the lack of datasets labeled at the single cell level. We extend the application of CNNs to microscopy image classification and segmentation using multiple instance learning (MIL). We present the adaptive Noisy-AND MIL pooling function, a new MIL operator that is robust to outliers. Combining CNNs with MIL enables training CNNs using full resolution microscopy images with global labels. We base our approach on the similarity between the aggregation function used in MIL and pooling layers used in CNNs. We show that training MIL CNNs end-to-end outperforms several previous methods on both mammalian and yeast microscopy images without requiring any segmentation steps

    DASNet: Reducing Pixel-level Annotations for Instance and Semantic Segmentation

    Full text link
    Pixel-level annotation demands expensive human efforts and limits the performance of deep networks that usually benefits from more such training data. In this work we aim to achieve high quality instance and semantic segmentation results over a small set of pixel-level mask annotations and a large set of box annotations. The basic idea is exploring detection models to simplify the pixel-level supervised learning task and thus reduce the required amount of mask annotations. Our architecture, named DASNet, consists of three modules: detection, attention, and segmentation. The detection module detects all classes of objects, the attention module generates multi-scale class-specific features, and the segmentation module recovers the binary masks. Our method demonstrates substantially improved performance compared to existing semi-supervised approaches on PASCAL VOC 2012 dataset

    Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey

    Full text link
    From the autonomous car driving to medical diagnosis, the requirement of the task of image segmentation is everywhere. Segmentation of an image is one of the indispensable tasks in computer vision. This task is comparatively complicated than other vision tasks as it needs low-level spatial information. Basically, image segmentation can be of two types: semantic segmentation and instance segmentation. The combined version of these two basic tasks is known as panoptic segmentation. In the recent era, the success of deep convolutional neural networks (CNN) has influenced the field of segmentation greatly and gave us various successful models to date. In this survey, we are going to take a glance at the evolution of both semantic and instance segmentation work based on CNN. We have also specified comparative architectural details of some state-of-the-art models and discuss their training details to present a lucid understanding of hyper-parameter tuning of those models. We have also drawn a comparison among the performance of those models on different datasets. Lastly, we have given a glimpse of some state-of-the-art panoptic segmentation models.Comment: 38 pages, 29 figures, 8 table

    Deep Patch Learning for Weakly Supervised Object Classification and Discovery

    Full text link
    Patch-level image representation is very important for object classification and detection, since it is robust to spatial transformation, scale variation, and cluttered background. Many existing methods usually require fine-grained supervisions (e.g., bounding-box annotations) to learn patch features, which requires a great effort to label images may limit their potential applications. In this paper, we propose to learn patch features via weak supervisions, i.e., only image-level supervisions. To achieve this goal, we treat images as bags and patches as instances to integrate the weakly supervised multiple instance learning constraints into deep neural networks. Also, our method integrates the traditional multiple stages of weakly supervised object classification and discovery into a unified deep convolutional neural network and optimizes the network in an end-to-end way. The network processes the two tasks object classification and discovery jointly, and shares hierarchical deep features. Through this jointly learning strategy, weakly supervised object classification and discovery are beneficial to each other. We test the proposed method on the challenging PASCAL VOC datasets. The results show that our method can obtain state-of-the-art performance on object classification, and very competitive results on object discovery, with faster testing speed than competitors.Comment: Accepted by Pattern Recognitio

    Self-Transfer Learning for Fully Weakly Supervised Object Localization

    Full text link
    Recent advances of deep learning have achieved remarkable performances in various challenging computer vision tasks. Especially in object localization, deep convolutional neural networks outperform traditional approaches based on extraction of data/task-driven features instead of hand-crafted features. Although location information of region-of-interests (ROIs) gives good prior for object localization, it requires heavy annotation efforts from human resources. Thus a weakly supervised framework for object localization is introduced. The term "weakly" means that this framework only uses image-level labeled datasets to train a network. With the help of transfer learning which adopts weight parameters of a pre-trained network, the weakly supervised learning framework for object localization performs well because the pre-trained network already has well-trained class-specific features. However, those approaches cannot be used for some applications which do not have pre-trained networks or well-localized large scale images. Medical image analysis is a representative among those applications because it is impossible to obtain such pre-trained networks. In this work, we present a "fully" weakly supervised framework for object localization ("semi"-weakly is the counterpart which uses pre-trained filters for weakly supervised localization) named as self-transfer learning (STL). It jointly optimizes both classification and localization networks simultaneously. By controlling a supervision level of the localization network, STL helps the localization network focus on correct ROIs without any types of priors. We evaluate the proposed STL framework using two medical image datasets, chest X-rays and mammograms, and achieve signiticantly better localization performance compared to previous weakly supervised approaches.Comment: 9 pages, 4 figure

    Global Weighted Average Pooling Bridges Pixel-level Localization and Image-level Classification

    Full text link
    In this work, we first tackle the problem of simultaneous pixel-level localization and image-level classification with only image-level labels for fully convolutional network training. We investigate the global pooling method which plays a vital role in this task. Classical global max pooling and average pooling methods are hard to indicate the precise regions of objects. Therefore, we revisit the global weighted average pooling (GWAP) method for this task and propose the class-agnostic GWAP module and the class-specific GWAP module in this paper. We evaluate the classification and pixel-level localization ability on the ILSVRC benchmark dataset. Experimental results show that the proposed GWAP module can better capture the regions of the foreground objects. We further explore the knowledge transfer between the image classification task and the region-based object detection task. We propose a multi-task framework that combines our class-specific GWAP module with R-FCN. The framework is trained with few ground truth bounding boxes and large-scale image-level labels. We evaluate this framework on PASCAL VOC dataset. Experimental results show that this framework can use the data with only image-level labels to improve the generalization of the object detection model.Comment: technical repor

    A Review on Deep Learning Techniques Applied to Semantic Segmentation

    Full text link
    Image semantic segmentation is more and more being of interest for computer vision and machine learning researchers. Many applications on the rise need accurate and efficient segmentation mechanisms: autonomous driving, indoor navigation, and even virtual or augmented reality systems to name a few. This demand coincides with the rise of deep learning approaches in almost every field or application target related to computer vision, including semantic segmentation or scene understanding. This paper provides a review on deep learning methods for semantic segmentation applied to various application areas. Firstly, we describe the terminology of this field as well as mandatory background concepts. Next, the main datasets and challenges are exposed to help researchers decide which are the ones that best suit their needs and their targets. Then, existing methods are reviewed, highlighting their contributions and their significance in the field. Finally, quantitative results are given for the described methods and the datasets in which they were evaluated, following up with a discussion of the results. At last, we point out a set of promising future works and draw our own conclusions about the state of the art of semantic segmentation using deep learning techniques.Comment: Submitted to TPAMI on Apr. 22, 201

    Weakly Supervised Medical Diagnosis and Localization from Multiple Resolutions

    Full text link
    Diagnostic imaging often requires the simultaneous identification of a multitude of findings of varied size and appearance. Beyond global indication of said findings, the prediction and display of localization information improves trust in and understanding of results when augmenting clinical workflow. Medical training data rarely includes more than global image-level labels as segmentations are time-consuming and expensive to collect. We introduce an approach to managing these practical constraints by applying a novel architecture which learns at multiple resolutions while generating saliency maps with weak supervision. Further, we parameterize the Log-Sum-Exp pooling function with a learnable lower-bounded adaptation (LSE-LBA) to build in a sharpness prior and better handle localizing abnormalities of different sizes using only image-level labels. Applying this approach to interpreting chest x-rays, we set the state of the art on 9 abnormalities in the NIH's CXR14 dataset while generating saliency maps with the highest resolution to date.Comment: submitted to ECCV 201
    • …
    corecore