470 research outputs found

    Some drive train control problems in hybrid i.c engine/battery electric vehicles

    Get PDF
    This thesis describes the development of a microprocessor based control system for a parallel hybrid petrol/electric vehicle. All the fundamental systems needed to produce an operational vehicle have been developed and tested using a full sized experimental rig in the laboratory. The work begins with a review of the history of hybrid vehicles, placing emphasis on the ability of the petrol electric design to considerably reduce the consumption of oil based fuels, by transferring some of the load to the broad base of fuels used to generate electricity. Efficient operation of a hybrid depends on the correct scheduling of load between engine and motor, and correct choice of gear ratio. To make this possible torque control systems using indirect measurements provided by cheap sensors, have been developed. Design of the control systems is based on a theoretical analysis of both the engine and the motor. Prior to final controller design, using the pole placement method, the transfer functions arising from the theory are identified using a digital model reference technique. The resulting closed loop systems exhibit well tuned behaviour which agrees well with simulation. To complete the component control structure, a pneumatic actuation system was added to a 'manual gearbox' bringing it under complete computer control. All aspects of component control have been brought together so that an operator can drive the system through simulated cycles. Transitions between modes of operation during a cycle are presently based on speed, but the software is structured so that efficiency based strategies may be readily incorporated in future. Consistent control over cycles has been ensured by the development of a computer speed controller, which takes the place of an operator. This system demonstrates satisfactory transition between all operating modes

    Intelligent control and look-ahead energy management of hybrid electric vehicles

    Full text link
    A review of the state of knowledge in the field of control and energy management in HEVs is carried out. The key innovation of the project is the development of a model of a PHEV using the real road data with an intelligent look-ahead online controller. Another novelty of this work is the method of route planning. It combines the information of vehicle sensors such as accelerometer and speedometer with the data of a GPS to create a road grade map for use within the look-ahead energy management strategy in the vehicle. For the PHEV, an adaptive cruise controller is modelled and an optimisation method is applied to obtain the best speed profile during a trajectory. Finally, the nonlinear model of the vehicle is applied with the sliding mode controller. The effect of using this controller is compared with the universal cruise controller. The stability of the system is studied and proved

    Development of a Hybrid Vehicle Powertrain Test Laboratory

    Get PDF
    During the last two years, Embry-Riddle Aeronautical University has installed and tested a fully functional eddy-current chassis dynamometer testing facility on campus. An automotive test facility requires a systems engineering approach to install, calibrate and commission a chassis dynamometer. This thesis shows that, the dynamometer test facility was successfully installed, commissioned and documented to safely support the power train development and testing. We can currently test the EcoCAR vehicle and a number of other front-wheel-drive vehicles at our university campus using the eddy current chassis dynamometer

    Path Following Control of Automated Vehicle Considering Uncertainties and Disturbances with Parametric Varying

    Full text link
    Automated Vehicle Path Following Control (PFC) is an advanced control system that can regulate the vehicle into a collision-free region in the presence of other objects on the road. Common collision avoidance functions, such as forward collision warning and automatic emergency braking, have recently been developed and equipped on production vehicles. However, it is impossible to develop a perfectly precise vehicle model when the vehicle is driving. Most PFCs did not consider uncertainties in the vehicle model, external disturbances, and parameter variations at the same time. To address the issues associated with this important feature and function in autonomous driving, a new vehicle PFC is proposed using a robust model predictive control (MPC) design technique based on matrix inequality and the theoretical approach of the hybrid &\& switched system. The proposed methodology requires a combination of continuous and discrete states, e.g. regulating the continuous states of the AV (e.g., velocity and yaw angle) and discrete switching of the control strategy that affects the dynamic behaviors of the AV under different driving speeds. Firstly, considering bounded model uncertainties, and norm-bounded external disturbances, the system states and control matrices are modified

    Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility

    Get PDF
    According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies

    The Fourteenth Scandinavian International Conference on Fluid Power, SICFP15: Abstracts

    Get PDF
    At this time the conference includes various themes like hybrids, drives, digital hydraulics and pneumatics. Special attention in the program is given for energy efficiency, renewable energy production and energy recovery. They are reflecting well the situation, where environmental issues and energy saving are increasingly important issues

    Eco-driving technology for sustainable road transport: A review

    Full text link
    © 2018 Elsevier Ltd Road transport consumes significant quantities of fossil fuel and accounts for a significant proportion of CO2 and pollutant emissions worldwide. The driver is a major and often overlooked factor that determines vehicle performance. Eco-driving is a relatively low-cost and immediate measure to reduce fuel consumption and emissions significantly. This paper reviews the major factors, research methods and implementation of eco-driving technology. The major factors of eco-driving are acceleration/deceleration, driving speed, route choice and idling. Eco-driving training programs and in-vehicle feedback devices are commonly used to implement eco-driving skills. After training or using in-vehicle devices, immediate and significant reductions in fuel consumption and CO2 emissions have been observed with slightly increased travel time. However, the impacts of both methods attenuate over time due to the ingrained driving habits developed over the years. These findings imply the necessity of developing quantitative eco-driving patterns that could be integrated into vehicle hardware so as to generate more constant and uniform improvements, as well as developing more effective and lasting training programs and in-vehicle devices. Current eco-driving studies mainly focus on the fuel savings and CO2 reduction of individual vehicles, but ignore the pollutant emissions and the impacts at network levels. Finally, the challenges and future research directions of eco-driving technology are elaborated

    Designing and Implementing a Model Vehicle Platoon with Longitudinal Control

    Get PDF
    Decreasing fuel consumption and increasing road capacity are both desired in regards to heavy duty vehicles. One proposed way of doing this is by having vehicles travelling at close distances to reduce the air drag, and thereby reducing their fuel consumption. This thesis address the platooning problem on model-scale vehicles as they are a desirable demonstration platform since they can be driven indoors. This thesis considers the implementation and evaluation of the longitudinal control of a model-scale vehicle platoon where Model Predictive Control is utilised. The concept of platooning on real full-size vehicles is briefly discussed and some of its benefits are described. The thesis then discusses and evaluates what sensors are necessary to equip the model vehicles with and how to implement them, in addition to a discussion and evaluation of inter-vehicular communication in an indoor environment is provided. Then, based on the available sensors, a heuristic feedback controller and a model-based controller is designed as distance controllers, as well as a feedback controller used for speed control, and then connected in a cascading structure. The two controllers are then evaluated in simulations based on different scenarios and finally results from a working implementation on the model-scale vehicles are presented. The end results from this thesis are a demonstration platform of two model-scale electrical vehicles as well as two different distance control algorithms both based on using the cruise control developed in the vehicles

    English. Навчальний посібник з англійської мови для студентів І-ІІ курсів спеціальності «Автомобілі і автомобільне господарство»

    Get PDF
    Part I… Lesson 1. Essential parts of an automobile… 5-- Unit 2. Types of Waves…8 -- Unit 3. Speed of Waves… 10-- Unit 4. Interactions of Waves…13-- Unit 5. Electromagnetic Waves…16-- Unit 6. Type of Waves…19-- Part II…22-- Unit 1. Infrared Rays… 22-- Unit 2. Visible Light…25-- Unit 3. Wave or Particle?... 29-- Unit 4. Reflection of Light…31-- Unit 5. Reflection and Mirrors…34-- Unit 6. Refraction of Light…37-- Unit 7. Optical Instruments…40-- Unit 8. Lasers…43-- Unit 9. Fiber Optics… 47-- Part III… 52-- Unit 1. A Halogen Lamp…52-- Unit 2. LED Lamp…54-- Unit 3. Electroluminescent Wire… 57-- Unit 4. Black Light… 59-- Unit 5. Compact Fluorescent Lamp (CFL)… 62-- Unit 6. Plasma Lamps. …65-- Unit 7. Architectural Lighting Design…68-- Part IV…70-- Additional reading… 70-
    corecore