185,317 research outputs found
Проведении ультразвукового контроля тонкостенных стальных изделий транспортных средств
В работе представлена методика инженерной оценки снижения удерживающей способности сетчатых средств обеспечения сплошности топлива вследствии движения топлива вдоль сетчатой поверхности, которая контактирует с газовой фазой.The technique of an engineering decreasing estimation of mesh phase’s delimiters retention at functionability of means fuel continuity in consideration of fuel movement along the mesh surface which contacts to a gas phase has been presented in present work
Structure of confined laminar spray diffusion flames: Numerical investigation
The structure of confined laminar spray diffusion flames is investigated numerically by solving the gas-phase conservation equations for mass species, continuity, momentum, and energy and the liquid-phase equations for droplet position, velocity, size, and temperature. A one-step global reaction scheme along with six equilibrium reactions are employed to model the flame chemistry. Monodisperse as well as polydisperse sprays are considered. The numerical results demonstrate that liquid spray flames substantially differ from gaseous flames in their structure, i.e., temperature, concentration, and velocity fields, shape, and dimensions under the same conditions. Spray flames are predicted to be taller and narrower than their counterpart gaseous ones and their shapes are almost cylindrical. This is in agreement with experimental observations. The numerical computations also show that the use of the equilibrium reactions with the one-step reaction scheme decreases the flame temperature compared to the one-step reaction scheme without the equilibrium reactions and more importantly increases the surface area of the flame zone due to a phenomenon termed 'equilibrium broadening.' The spray flames also possess a finite thickness with minimal overlap of the fuel and oxygen species. A case for which a fuel-mixture consisting of 20 to 80 percent gas-liquid by mass is introduced into the combustor is also investigated and compared with predictions using only gaseous or liquid fuel
Resilience of food companies to calamities - perceptions in the Netherlands
Calamities such as extreme droughts and trade or infrastructure breakdowns potentially hamper the continuity of individual food companies, as well as the continuity of food supply in Europe at large. There is a lack of insight into food companies’ resilience in case of cumulative calamities or calamities that did not happen before in recent history. In this context, an expert elicitation study among feed and food companies in the Netherlands was undertaken. Results show that lengthy or structural unavailability of electricity and a lengthy crisis of road transport are perceived as the most threatening calamities.Outcomes also show a relatively limited implementation of BCM (business continuity management) at company level. Complete BCM programs for top-3 calamities perceived to threaten the continuity of food supply in Europe are reported by 0% to 30% of the companies. For calamities perceived to be important for business continuity this is between 20% and 40%. In the field of risk management a leading role is attributed to the public sector for improving international governance and setting up a so-called masterplan with measures such as larger raw-materials stocks and broad sourcing. Findings suggest that further actions are needed, starting with prioritised calamities and the design of a masterplan. Yet, stakeholders are also urged to pro-actively “think the unthinkable
Impact of prescribed fire in soil properties after 5-years: experimental study.
Wildfires are a serious problem in areas with a Mediterranean climate owing to the hot summers and drought conditions providing perfect conditions for wildfire, especially when there are large amounts of fuel accumulation and continuity between forested areas. In the Mediterranean, high severity fires that spread rapidly are common and difficult to be extinguished. Thus, the identification of tools to reduce fire spread and minimize their incidence and effects is crucial. Preventive forestry is a good tool for achieving forest structures with lower amounts of fuel and a greater resistance to fire. Prescribed fire is the planned use of fire under predetermined weather, fuel and topographic parameters to achieve clearly defined objectives as controlling fire regimes by managing fuel, counteracting the disappearance of biomass-consuming land management practices and reducing the overall fire risk. Normally, prescribed fires are low intensity fires and, if managed adequately, do not cause any damage to trees, especially in Mediterranean ecosystems where trees are resilient to fire. Besides, prescribed fires usually have different impacts on soils, water resources, biodiversity, the risk-reduction of wildfires and carbon storage. Prescribed fires usually are of low/moderate severity. Because of this, the effects of prescribed fires on soils properties may vary from one site to another. The objectives of our study are to: i) determine the impact of the prescribed fire just after and ii) 5-years later with respect to natural conditions. To do this, in 2011, a prescribed fire was conducted in one experimental area of Mediterranean rangeland. After the fire, soil samples (0-5 cm of depth) were taken in burned and unburned plots in order to analyse: pH, electrical conductivity (EC), soil organic carbon, cationic exchangeable capacity (CEC), aggregate stability (AS), and hydrophobicity. The results indicated that: i) prescribed fire only had significantly effects in CEC just after the fire; 5-years after, there were no significant differences between the unburned and burned plots, but two soil properties significantly changed when burned soil samples from 2016 and 2011 were compared: EC and AS in the fraction of 0.053-0.125 mm. In general, the soil properties were not substantially modified by the prescribed fire, supporting the idea it is a very useful tool with very low impact for managing Mediterranean rangelands in order to reduce fuel accumulation and fire risk.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Entropy generation analysisfor the design optimizationof solid oxide fuel cells
Purpose - The aim of this paper is to investigate performance improvements of a monolithic solid oxide fuel cell geometry through an entropy generation analysis. Design/methodology/approach - The analysis of entropy generation rates makes it possible to identify the phenomena that cause the main irreversibilities in the fuel cell, to understand their causes and to propose changes in the design and operation of the system. The various contributions to entropy generation are analyzed separately in order to identify which geometrical parameters should be considered as the independent variables in the optimization procedure. The local entropy generation rates are obtained through 3D numerical calculations, which account for the heat, mass, momentum, species and current transport. The system is then optimized in order to minimize the overall entropy generation and increase efficiency. Findings - In the optimized geometry, the power density is increased by about 10 per cent compared to typical designs. In addition, a 20 per cent reduction in the fuel cell volume can be achieved with less than a 1 per cent reduction in the power density with respect to the optimal design. Research limitations/implications - The physical model is based on a simple composition of the reactants, which also implies that no chemical reactions (water gas shift, methane steam reforming, etc.) take place in the fuel cell. Nevertheless, the entire procedure could be applied in the case of different gas compositions. Practical implications - Entropy generation analysis allows one to identify the geometrical parameters that are expected to play important roles in the optimization process and thus to reduce the free independent variables that have to be considered. This information may also be used for design improvement purposes. Originality/value - In this paper, entropy generation analysis is used for a multi-physics problem that involves various irreversible terms, with the double use of this physical quantity: as a guide to select the most relevant design geometrical quantities to be modified and as objective function to be minimized in the optimization proces
Local forest structure variability increases resilience to wildfire in dry western U.S. coniferous forests.
A 'resilient' forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine-scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long-lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire-induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability
WUI state of the art and regulatory needs in Europe
The document summarizes the state of the art of the regulationsrelevant to WUI in Europe, providing an organized set of references to the specific regulatory documents. It is focused on three main relevant topics: i) fuel-reduced fringes; ii) Building codes and standards; iii)Wildland-Industrial Interface. Current regulations are analysed and compared, leading to the identification of important needs and limitations of the current European regulatory frameworkPreprin
Influence of gas compression on flame acceleration in the early stage of burning in tubes
The mechanism of finger flame acceleration at the early stage of burning in
tubes was studied experimentally by Clanet and Searby [Combust. Flame 105: 225
(1996)] for slow propane-air flames, and elucidated analytically and
computationally by Bychkov et al. [Combust. Flame 150: 263 (2007)] in the limit
of incompressible flow. We have now analytically, experimentally and
computationally studied the finger flame acceleration for fast burning flames,
when the gas compressibility assumes an important role. Specifically, we have
first developed a theory through small Mach number expansion up to the
first-order terms, demonstrating that gas compression reduces the acceleration
rate and the maximum flame tip velocity, and thereby moderates the finger flame
acceleration noticeably. This is an important quantitative correction to
previous theoretical analysis. We have also conducted experiments for
hydrogen-oxygen mixtures with considerable initial values of the Mach number,
showing finger flame acceleration with the acceleration rate much smaller than
those obtained previously for hydrocarbon flames. Furthermore, we have
performed numerical simulations for a wide range of initial laminar flame
velocities, with the results substantiating the experiments. It is shown that
the theory is in good quantitative agreement with numerical simulations for
small gas compression (small initial flame velocities). Similar to previous
works, the numerical simulation shows that finger flame acceleration is
followed by the formation of the "tulip" flame, which indicates termination of
the early acceleration process.Comment: 19 pages, 20 figure
Numerical calculations of pressure oscillations in a side-dump ramjet engine
Pressure oscillations in a side-dump ramjet engine
have been studied, using a one-dimensional numerical
analysis. The engine is treated in two parts; the inlet
section, including a region of two-phase flow downstream
of fuel injection, and a dump combustor. Each
region is treated separately and matched with the
other. Following calculation of the mean flow field, the
oscillatory characteristics of the engine are determined
by its reponse to a disturbance imposed on the
mean fiow. Results have shown favorable comparison
with experimental data obtained at the Naval Weapons
Center, China Lake
- …
