27 research outputs found

    MaskDiff: Modeling Mask Distribution with Diffusion Probabilistic Model for Few-Shot Instance Segmentation

    Full text link
    Few-shot instance segmentation extends the few-shot learning paradigm to the instance segmentation task, which tries to segment instance objects from a query image with a few annotated examples of novel categories. Conventional approaches have attempted to address the task via prototype learning, known as point estimation. However, this mechanism depends on prototypes (\eg mean of K−K-shot) for prediction, leading to performance instability. To overcome the disadvantage of the point estimation mechanism, we propose a novel approach, dubbed MaskDiff, which models the underlying conditional distribution of a binary mask, which is conditioned on an object region and K−K-shot information. Inspired by augmentation approaches that perturb data with Gaussian noise for populating low data density regions, we model the mask distribution with a diffusion probabilistic model. We also propose to utilize classifier-free guided mask sampling to integrate category information into the binary mask generation process. Without bells and whistles, our proposed method consistently outperforms state-of-the-art methods on both base and novel classes of the COCO dataset while simultaneously being more stable than existing methods. The source code is available at: https://github.com/minhquanlecs/MaskDiff.Comment: Accepted at AAAI 2024 (oral presentation

    Robotic Interestingness via Human-Informed Few-Shot Object Detection

    Full text link
    Interestingness recognition is crucial for decision making in autonomous exploration for mobile robots. Previous methods proposed an unsupervised online learning approach that can adapt to environments and detect interesting scenes quickly, but lack the ability to adapt to human-informed interesting objects. To solve this problem, we introduce a human-interactive framework, AirInteraction, that can detect human-informed objects via few-shot online learning. To reduce the communication bandwidth, we first apply an online unsupervised learning algorithm on the unmanned vehicle for interestingness recognition and then only send the potential interesting scenes to a base-station for human inspection. The human operator is able to draw and provide bounding box annotations for particular interesting objects, which are sent back to the robot to detect similar objects via few-shot learning. Only using few human-labeled examples, the robot can learn novel interesting object categories during the mission and detect interesting scenes that contain the objects. We evaluate our method on various interesting scene recognition datasets. To the best of our knowledge, it is the first human-informed few-shot object detection framework for autonomous exploration

    Closing the Generalization Gap in One-Shot Object Detection

    Full text link
    Despite substantial progress in object detection and few-shot learning, detecting objects based on a single example - one-shot object detection - remains a challenge: trained models exhibit a substantial generalization gap, where object categories used during training are detected much more reliably than novel ones. Here we show that this generalization gap can be nearly closed by increasing the number of object categories used during training. Our results show that the models switch from memorizing individual categories to learning object similarity over the category distribution, enabling strong generalization at test time. Importantly, in this regime standard methods to improve object detection models like stronger backbones or longer training schedules also benefit novel categories, which was not the case for smaller datasets like COCO. Our results suggest that the key to strong few-shot detection models may not lie in sophisticated metric learning approaches, but instead in scaling the number of categories. Future data annotation efforts should therefore focus on wider datasets and annotate a larger number of categories rather than gathering more images or instances per category

    Cos R-CNN for online few-shot object detection

    Get PDF
    We propose Cos R-CNN, a simple exemplar-based R-CNN formulation that is designed for online few-shot object detection. That is, it is able to localise and classify novel object categories in images with few examples without fine-tuning. Cos R-CNN frames detection as a learning-to-compare task: unseen classes are represented as exemplar images, and objects are detected based on their similarity to these exemplars. The cosine-based classification head allows for dynamic adaptation of classification parameters to the exemplar embedding, and encourages the clustering of similar classes in embedding space without the need for manual tuning of distance-metric hyperparameters. This simple formulation achieves best results on the recently proposed 5-way ImageNet few-shot detection benchmark, beating the online 1/5/10-shot scenarios by more than 8/3/1%, as well as performing up to 20% better in online 20-way few-shot VOC across all shots on novel classes

    Few-Shot Object Detection in Unseen Domains

    Full text link
    Few-shot object detection (FSOD) has thrived in recent years to learn novel object classes with limited data by transferring knowledge gained on abundant base classes. FSOD approaches commonly assume that both the scarcely provided examples of novel classes and test-time data belong to the same domain. However, this assumption does not hold in various industrial and robotics applications, where a model can learn novel classes from a source domain while inferring on classes from a target domain. In this work, we address the task of zero-shot domain adaptation, also known as domain generalization, for FSOD. Specifically, we assume that neither images nor labels of the novel classes in the target domain are available during training. Our approach for solving the domain gap is two-fold. First, we leverage a meta-training paradigm, where we learn the domain shift on the base classes, then transfer the domain knowledge to the novel classes. Second, we propose various data augmentations techniques on the few shots of novel classes to account for all possible domain-specific information. To constraint the network into encoding domain-agnostic class-specific representations only, a contrastive loss is proposed to maximize the mutual information between foreground proposals and class embeddings and reduce the network's bias to the background information from target domain. Our experiments on the T-LESS, PASCAL-VOC, and ExDark datasets show that the proposed approach succeeds in alleviating the domain gap considerably without utilizing labels or images of novel categories from the target domain

    Multi-Faceted Distillation of Base-Novel Commonality for Few-shot Object Detection

    Full text link
    Most of existing methods for few-shot object detection follow the fine-tuning paradigm, which potentially assumes that the class-agnostic generalizable knowledge can be learned and transferred implicitly from base classes with abundant samples to novel classes with limited samples via such a two-stage training strategy. However, it is not necessarily true since the object detector can hardly distinguish between class-agnostic knowledge and class-specific knowledge automatically without explicit modeling. In this work we propose to learn three types of class-agnostic commonalities between base and novel classes explicitly: recognition-related semantic commonalities, localization-related semantic commonalities and distribution commonalities. We design a unified distillation framework based on a memory bank, which is able to perform distillation of all three types of commonalities jointly and efficiently. Extensive experiments demonstrate that our method can be readily integrated into most of existing fine-tuning based methods and consistently improve the performance by a large margin
    corecore