3 research outputs found

    From relational ClassSheets to UML+OCL

    Get PDF
    Spreadsheets are among the most popular programming languages in the world. Unfortunately, spreadsheet systems were not tailored from scratch with modern programming language features that guarantee, as much as possible, program correctness. As a consequence, spreadsheets are populated with unacceptable amounts of errors. In other programming language settings, model-based approaches have been proposed to increase productivity and program efectiveness. Within spreadsheets, this approach has also been followed, namely by ClassSheets. In this paper, we propose an extension to ClassSheets to allow the specification of spreadsheets that can be viewed as relational databases. Moreover, we present a transformation from ClassSheet models to UML class diagrams enriched with OCL constraints. This brings to the spreadsheet realm the entire paraphernalia of model validation techniques that are available for UML.(undefined

    Model inference for spreadsheets

    Get PDF
    Many errors in spreadsheet formulas can be avoided if spreadsheets are built automati- cally from higher-level models that can encode and enforce consistency constraints in the generated spreadsheets. Employing this strategy for legacy spreadsheets is dificult, because the model has to be reverse engineered from an existing spreadsheet and existing data must be transferred into the new model-generated spreadsheet. We have developed and implemented a technique that automatically infers relational schemas from spreadsheets. This technique uses particularities from the spreadsheet realm to create better schemas. We have evaluated this technique in two ways: First, we have demonstrated its appli- cability by using it on a set of real-world spreadsheets. Second, we have run an empirical study with users. The study has shown that the results produced by our technique are comparable to the ones developed by experts starting from the same (legacy) spreadsheet data. Although relational schemas are very useful to model data, they do not t well spreadsheets as they do not allow to express layout. Thus, we have also introduced a mapping between relational schemas and ClassSheets. A ClassSheet controls further changes to the spreadsheet and safeguards it against a large class of formula errors. The developed tool is a contribution to spreadsheet (reverse) engineering, because it lls an important gap and allows a promising design method (ClassSheets) to be applied to a huge collection of legacy spreadsheets with minimal effort.We would like to thank Orlando Belo for his help on running and analyzing the empirical study. We would also like to thank Paulo Azevedo for his help in conducting the statistical analysis of our empirical study. We would also like to thank the anonymous reviewers for their suggestions which helped us to improve the paper. This work is funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-010048. The first author was also supported by FCT grant SFRH/BPD/73358/2010

    Automated model-based spreadsheet debugging

    Get PDF
    Spreadsheets are interactive data organization and calculation programs that are developed in spreadsheet environments like Microsoft Excel or LibreOffice Calc. They are probably the most successful example of end-user developed software and are utilized in almost all branches and at all levels of companies. Although spreadsheets often support important decision making processes, they are, like all software, prone to error. In several cases, faults in spreadsheets have caused severe losses of money. Spreadsheet developers are usually not educated in the practices of software development. As they are thus not familiar with quality control methods like systematic testing or debugging, they have to be supported by the spreadsheet environment itself to search for faults in their calculations in order to ensure the correctness and a better overall quality of the developed spreadsheets. This thesis by publication introduces several approaches to locate faults in spreadsheets. The presented approaches are based on the principles of Model-Based Diagnosis (MBD), which is a technique to find the possible reasons why a system does not behave as expected. Several new algorithmic enhancements of the general MBD approach are combined in this thesis to allow spreadsheet users to debug their spreadsheets and to efficiently find the reason of the observed unexpected output values. In order to assure a seamless integration into the environment that is well-known to the spreadsheet developers, the presented approaches are implemented as an extension for Microsoft Excel. The first part of the thesis outlines the different algorithmic approaches that are introduced in this thesis and summarizes the improvements that were achieved over the general MBD approach. In the second part, the appendix, a selection of the author's publications are presented. These publications comprise (a) a survey of the research in the area of spreadsheet quality assurance, (b) a work describing how to adapt the general MBD approach to spreadsheets, (c) two new algorithmic improvements of the general technique to speed up the calculation of the possible reasons of an observed fault, (d) a new concept and algorithm to efficiently determine questions that a user can be asked during debugging in order to reduce the number of possible reasons for the observed unexpected output values, and (e) a new method to find faults in a set of spreadsheets and a new corpus of real-world spreadsheets containing faults that can be used to evaluate the proposed debugging approaches
    corecore