1,720,406 research outputs found

    Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data

    Get PDF
    Evidence is mounting that the temporal dynamics of the climate system are changing at the same time as the average global temperature is increasing due to multiple climate forcings. A large number of extreme weather events such as prolonged cold spells, heatwaves, droughts and floods have been recorded around the world in the past 10 years. Such changes in the temporal scaling behaviour of climate time-series data can be difficult to detect. While there are easy and direct ways of analysing climate data by calculating the means and variances for different levels of temporal aggregation, these methods can miss more subtle changes in their dynamics. This paper describes multi-scale entropy (MSE) analysis as a tool to study climate time-series data and to identify temporal scales of variability and their change over time in climate time-series. MSE estimates the sample entropy of the time-series after coarse-graining at different temporal scales. An application of MSE to Central European, variance-adjusted, mean monthly air temperature anomalies (CRUTEM4v) is provided. The results show that the temporal scales of the current climate (1960–2014) are different from the long-term average (1850–1960). For temporal scale factors longer than 12 months, the sample entropy increased markedly compared to the long-term record. Such an increase can be explained by systems theory with greater complexity in the regional temperature data. From 1961 the patterns of monthly air temperatures are less regular at time-scales greater than 12 months than in the earlier time period. This finding suggests that, at these inter-annual time scales, the temperature variability has become less predictable than in the past. It is possible that climate system feedbacks are expressed in altered temporal scales of the European temperature time-series data. A comparison with the variance and Shannon entropy shows that MSE analysis can provide additional information on the statistical properties of climate time-series data that can go undetected using traditional method

    General anesthesia reduces complexity and temporal asymmetry of the informational structures derived from neural recordings in Drosophila

    Full text link
    We apply techniques from the field of computational mechanics to evaluate the statistical complexity of neural recording data from fruit flies. First, we connect statistical complexity to the flies' level of conscious arousal, which is manipulated by general anesthesia (isoflurane). We show that the complexity of even single channel time series data decreases under anesthesia. The observed difference in complexity between the two states of conscious arousal increases as higher orders of temporal correlations are taken into account. We then go on to show that, in addition to reducing complexity, anesthesia also modulates the informational structure between the forward- and reverse-time neural signals. Specifically, using three distinct notions of temporal asymmetry we show that anesthesia reduces temporal asymmetry on information-theoretic and information-geometric grounds. In contrast to prior work, our results show that: (1) Complexity differences can emerge at very short timescales and across broad regions of the fly brain, thus heralding the macroscopic state of anesthesia in a previously unforeseen manner, and (2) that general anesthesia also modulates the temporal asymmetry of neural signals. Together, our results demonstrate that anesthetized brains become both less structured and more reversible.Comment: 14 pages, 6 figures. Comments welcome; Added time-reversal analysis, updated discussion, new figures (Fig. 5 & Fig. 6) and Tables (Tab. 1

    A Bayesian fusion model for space-time reconstruction of finely resolved velocities in turbulent flows from low resolution measurements

    Full text link
    The study of turbulent flows calls for measurements with high resolution both in space and in time. We propose a new approach to reconstruct High-Temporal-High-Spatial resolution velocity fields by combining two sources of information that are well-resolved either in space or in time, the Low-Temporal-High-Spatial (LTHS) and the High-Temporal-Low-Spatial (HTLS) resolution measurements. In the framework of co-conception between sensing and data post-processing, this work extensively investigates a Bayesian reconstruction approach using a simulated database. A Bayesian fusion model is developed to solve the inverse problem of data reconstruction. The model uses a Maximum A Posteriori estimate, which yields the most probable field knowing the measurements. The DNS of a wall-bounded turbulent flow at moderate Reynolds number is used to validate and assess the performances of the present approach. Low resolution measurements are subsampled in time and space from the fully resolved data. Reconstructed velocities are compared to the reference DNS to estimate the reconstruction errors. The model is compared to other conventional methods such as Linear Stochastic Estimation and cubic spline interpolation. Results show the superior accuracy of the proposed method in all configurations. Further investigations of model performances on various range of scales demonstrate its robustness. Numerical experiments also permit to estimate the expected maximum information level corresponding to limitations of experimental instruments.Comment: 15 pages, 6 figure
    corecore