1,720,406 research outputs found
Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data
Evidence is mounting that the temporal dynamics of the climate system are changing at the same time as the average global temperature is increasing due to multiple climate forcings. A large number of extreme weather events such as prolonged cold spells, heatwaves, droughts and floods have been recorded around the world in the past 10 years. Such changes in the temporal scaling behaviour of climate time-series data can be difficult to detect. While there are easy and direct ways of analysing climate data by calculating the means and variances for different levels of temporal aggregation, these methods can miss more subtle changes in their dynamics. This paper describes multi-scale entropy (MSE) analysis as a tool to study climate time-series data and to identify temporal scales of variability and their change over time in climate time-series. MSE estimates the sample entropy of the time-series after coarse-graining at different temporal scales. An application of MSE to Central European, variance-adjusted, mean monthly air temperature anomalies (CRUTEM4v) is provided. The results show that the temporal scales of the current climate (1960–2014) are different from the long-term average (1850–1960). For temporal scale factors longer than 12 months, the sample entropy increased markedly compared to the long-term record. Such an increase can be explained by systems theory with greater complexity in the regional temperature data. From 1961 the patterns of monthly air temperatures are less regular at time-scales greater than 12 months than in the earlier time period. This finding suggests that, at these inter-annual time scales, the temperature variability has become less predictable than in the past. It is possible that climate system feedbacks are expressed in altered temporal scales of the European temperature time-series data. A comparison with the variance and Shannon entropy shows that MSE analysis can provide additional information on the statistical properties of climate time-series data that can go undetected using traditional method
General anesthesia reduces complexity and temporal asymmetry of the informational structures derived from neural recordings in Drosophila
We apply techniques from the field of computational mechanics to evaluate the
statistical complexity of neural recording data from fruit flies. First, we
connect statistical complexity to the flies' level of conscious arousal, which
is manipulated by general anesthesia (isoflurane). We show that the complexity
of even single channel time series data decreases under anesthesia. The
observed difference in complexity between the two states of conscious arousal
increases as higher orders of temporal correlations are taken into account. We
then go on to show that, in addition to reducing complexity, anesthesia also
modulates the informational structure between the forward- and reverse-time
neural signals. Specifically, using three distinct notions of temporal
asymmetry we show that anesthesia reduces temporal asymmetry on
information-theoretic and information-geometric grounds. In contrast to prior
work, our results show that: (1) Complexity differences can emerge at very
short timescales and across broad regions of the fly brain, thus heralding the
macroscopic state of anesthesia in a previously unforeseen manner, and (2) that
general anesthesia also modulates the temporal asymmetry of neural signals.
Together, our results demonstrate that anesthetized brains become both less
structured and more reversible.Comment: 14 pages, 6 figures. Comments welcome; Added time-reversal analysis,
updated discussion, new figures (Fig. 5 & Fig. 6) and Tables (Tab. 1
Recommended from our members
BioTIME: A database of biodiversity time series for the Anthropocene.
MotivationThe BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.Main types of variables includedThe database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record.Spatial location and grainBioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2).Time period and grainBioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year.Major taxa and level of measurementBioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.Software format.csv and .SQL
A Bayesian fusion model for space-time reconstruction of finely resolved velocities in turbulent flows from low resolution measurements
The study of turbulent flows calls for measurements with high resolution both
in space and in time. We propose a new approach to reconstruct
High-Temporal-High-Spatial resolution velocity fields by combining two sources
of information that are well-resolved either in space or in time, the
Low-Temporal-High-Spatial (LTHS) and the High-Temporal-Low-Spatial (HTLS)
resolution measurements. In the framework of co-conception between sensing and
data post-processing, this work extensively investigates a Bayesian
reconstruction approach using a simulated database. A Bayesian fusion model is
developed to solve the inverse problem of data reconstruction. The model uses a
Maximum A Posteriori estimate, which yields the most probable field knowing the
measurements. The DNS of a wall-bounded turbulent flow at moderate Reynolds
number is used to validate and assess the performances of the present approach.
Low resolution measurements are subsampled in time and space from the fully
resolved data. Reconstructed velocities are compared to the reference DNS to
estimate the reconstruction errors. The model is compared to other conventional
methods such as Linear Stochastic Estimation and cubic spline interpolation.
Results show the superior accuracy of the proposed method in all
configurations. Further investigations of model performances on various range
of scales demonstrate its robustness. Numerical experiments also permit to
estimate the expected maximum information level corresponding to limitations of
experimental instruments.Comment: 15 pages, 6 figure
- …
