4,507 research outputs found

    Non-Direct Encoding Method Based on Cellular Automata to Design Neural Network Architectures

    Get PDF
    Architecture design is a fundamental step in the successful application of Feed forward Neural Networks. In most cases a large number of neural networks architectures suitable to solve a problem exist and the architecture design is, unfortunately, still a human expert’s job. It depends heavily on the expert and on a tedious trial-and-error process. In the last years, many works have been focused on automatic resolution of the design of neural network architectures. Most of the methods are based on evolutionary computation paradigms. Some of the designed methods are based on direct representations of the parameters of the network. These representations do not allow scalability; thus, for representing large architectures very large structures are required. More interesting alternatives are represented by indirect schemes. They codify a compact representation of the neural network. In this work, an indirect constructive encoding scheme is proposed. This scheme is based on cellular automata representations and is inspired by the idea that only a few seeds for the initial configuration of a cellular automaton can produce a wide variety of feed forward neural networks architectures. The cellular approach is experimentally validated in different domains and compared with a direct codification scheme.Publicad

    Traffic flow modeling and forecasting using cellular automata and neural networks : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    In This thesis fine grids are adopted in Cellular Automata (CA) models. The fine-grid models are able to describe traffic flow in detail allowing position, speed, acceleration and deceleration of vehicles simulated in a more realistic way. For urban straight roads, two types of traffic flow, free and car-following flow, have been simulated. A novel five-stage speed-changing CA model is developed to describe free flow. The 1.5-second headway, based on field data, is used to simulate car-following processes, which corrects the headway of 1 second used in all previous CA models. Novel and realistic CA models, based on the Normal Acceptable Space (NAS) method, are proposed to systematically simulate driver behaviour and interactions between drivers to enter single-lane Two-Way Stop-Controlled (TWSC) intersections and roundabouts. The NAS method is based on the two following Gaussian distributions. Distribution of space required for all drivers to enter intersections or roundabouts is assumed to follow a Gaussian distribution, which corresponds to heterogeneity of driver behaviour. While distribution of space required for a single driver to enter an intersection or roundabout is assumed to follow another Gaussian distribution, which corresponds to inconsistency of driver behavior. The effects of passing lanes on single-lane highway traffic are investigated using fine grids CA. Vehicles entering, exiting from and changing lanes on passing lane sections are discussed in detail. In addition, a Genetic Algorithm-based Neural Network (GANN) method is proposed to predict Short-term Traffic Flow (STF) in urban networks, which is expected to be helpful for traffic control. Prediction accuracy and generalization ability of NN are improved by optimizing the number of neurons in the hidden layer and connection weights of NN using genetic operations such as selection, crossover and mutation

    Data-driven Flood Emulation: Speeding up Urban Flood Predictions by Deep Convolutional Neural Networks

    Full text link
    Computational complexity has been the bottleneck of applying physically-based simulations on large urban areas with high spatial resolution for efficient and systematic flooding analyses and risk assessments. To address this issue of long computational time, this paper proposes that the prediction of maximum water depth rasters can be considered as an image-to-image translation problem where the results are generated from input elevation rasters using the information learned from data rather than by conducting simulations, which can significantly accelerate the prediction process. The proposed approach was implemented by a deep convolutional neural network trained on flood simulation data of 18 designed hyetographs on three selected catchments. Multiple tests with both designed and real rainfall events were performed and the results show that the flood predictions by neural network uses only 0.5 % of time comparing with physically-based approaches, with promising accuracy and ability of generalizations. The proposed neural network can also potentially be applied to different but relevant problems including flood predictions for urban layout planning

    Robust Multi-Cellular Developmental Design

    Get PDF
    This paper introduces a continuous model for Multi-cellular Developmental Design. The cells are fixed on a 2D grid and exchange "chemicals" with their neighbors during the growth process. The quantity of chemicals that a cell produces, as well as the differentiation value of the cell in the phenotype, are controlled by a Neural Network (the genotype) that takes as inputs the chemicals produced by the neighboring cells at the previous time step. In the proposed model, the number of iterations of the growth process is not pre-determined, but emerges during evolution: only organisms for which the growth process stabilizes give a phenotype (the stable state), others are declared nonviable. The optimization of the controller is done using the NEAT algorithm, that optimizes both the topology and the weights of the Neural Networks. Though each cell only receives local information from its neighbors, the experimental results of the proposed approach on the 'flags' problems (the phenotype must match a given 2D pattern) are almost as good as those of a direct regression approach using the same model with global information. Moreover, the resulting multi-cellular organisms exhibit almost perfect self-healing characteristics
    • …
    corecore