2,089,096 research outputs found

    Feature detection from echocardiography images using local phase information

    Get PDF
    Ultrasound images are characterized by their special speckle appearance, low contrast, and low signal-to-noise ratio. It is always challenging to extract important clinical information from these images. An important step before formal analysis is to transform the image to significant features of interest. Intensity based methods do not perform particularly well on ultrasound images. However, it has been previously shown that these images respond well to local phase-based methods which are theoretically intensity-invariant and thus suitable for ultrasound images. We extend the previous local phase-based method to detect features using the local phase computed from monogenic signal which is an isotropic extension of the analytic signal. We apply our method of multiscale feature-asymmetry measurement and local phase-gradient computation to cardiac ultrasound (echocardiography) images for the detection of endocardial, epicardial and myocardial centerline

    Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    Get PDF
    UnlabelledPremise of the studyMeasurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. •Methods and resultsEasy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. •ConclusionsEasy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images

    Correction of "Cloud Removal By Fusing Multi-Source and Multi-Temporal Images"

    Full text link
    Remote sensing images often suffer from cloud cover. Cloud removal is required in many applications of remote sensing images. Multitemporal-based methods are popular and effective to cope with thick clouds. This paper contributes to a summarization and experimental comparation of the existing multitemporal-based methods. Furthermore, we propose a spatiotemporal-fusion with poisson-adjustment method to fuse multi-sensor and multi-temporal images for cloud removal. The experimental results show that the proposed method has potential to address the problem of accuracy reduction of cloud removal in multi-temporal images with significant changes.Comment: This is a correction version of the accepted IGARSS 2017 conference pape

    "Zero-Shot" Super-Resolution using Deep Internal Learning

    Full text link
    Deep Learning has led to a dramatic leap in Super-Resolution (SR) performance in the past few years. However, being supervised, these SR methods are restricted to specific training data, where the acquisition of the low-resolution (LR) images from their high-resolution (HR) counterparts is predetermined (e.g., bicubic downscaling), without any distracting artifacts (e.g., sensor noise, image compression, non-ideal PSF, etc). Real LR images, however, rarely obey these restrictions, resulting in poor SR results by SotA (State of the Art) methods. In this paper we introduce "Zero-Shot" SR, which exploits the power of Deep Learning, but does not rely on prior training. We exploit the internal recurrence of information inside a single image, and train a small image-specific CNN at test time, on examples extracted solely from the input image itself. As such, it can adapt itself to different settings per image. This allows to perform SR of real old photos, noisy images, biological data, and other images where the acquisition process is unknown or non-ideal. On such images, our method outperforms SotA CNN-based SR methods, as well as previous unsupervised SR methods. To the best of our knowledge, this is the first unsupervised CNN-based SR method
    • …
    corecore