12,332 research outputs found

    CeFF: A Frameword for Forensics Enabled Cloud Investigation

    Get PDF
    Today, cloud computing has developed a transformative model for the organization, business, governments that brings huge potentials and turn into popular for pay as you go, on-demand service, scalability and efficient services. However, cloud computing has made the concern for forensic data because of the architecture of cloud system is not measured appropriately. Due to the distributed nature of the cloud system, many aspects relating to the forensic investigation such as data collection, data storage, crime target, data violation are difficult to achieve. Investigating the incidents in the cloud environment is a challenging task because the forensics investigator still needs to relay on the third party such as cloud service provider for performing their investigation tasks. It makes the overall forensic process difficult to complete with a duration and presented it to the court. Recently, there are some cloud forensics studies to address the challenges such as evidence collection, data acquisition, identifying the incidents and so on. However, still, there is a research gap in terms of consistency of analysing forensic evidence from distributed environment and methodology to analyse the forensic data in the cloud. This thesis contributes towards the direction of addressing the research gaps. In particular, this work proposes a forensic investigation framework CeFF: A framework for forensics enabled cloud investigation to investigate evidence in the cloud computing environment. The framework includes a set of concepts from organisational, technical and legal perspectives, which gives a holistic view of analysing cybercrime from organisation context where the crime has occurred through technical context and legal impact. The CeFF also includes a systematic process that uses the concept for performing the investigation. The cloud-enabled forensics framework meets all the forensics related requirement such as data collection, examination, presents the report, and identifies the potential risks that can consider while investigating the evidence in the cloud-computing environment. Finally, the proposed CeFF is applied to a real-life example to validate its applicability. The result shows that CeFF supports analysing the forensic data for a crime occurred in cloud-based system in a systematic way

    Calm before the storm: the challenges of cloud computing in digital forensics

    Get PDF
    Cloud computing is a rapidly evolving information technology (IT) phenomenon. Rather than procure, deploy and manage a physical IT infrastructure to host their software applications, organizations are increasingly deploying their infrastructure into remote, virtualized environments, often hosted and managed by third parties. This development has significant implications for digital forensic investigators, equipment vendors, law enforcement, as well as corporate compliance and audit departments (among others). Much of digital forensic practice assumes careful control and management of IT assets (particularly data storage) during the conduct of an investigation. This paper summarises the key aspects of cloud computing and analyses how established digital forensic procedures will be invalidated in this new environment. Several new research challenges addressing this changing context are also identified and discussed

    A forensically-enabled IASS cloud computing architecture

    Get PDF
    Current cloud architectures do not support digital forensic investigators, nor comply with today’s digital forensics procedures largely due to the dynamic nature of the cloud. Whilst much research has focused upon identifying the problems that are introduced with a cloud-based system, to date there is a significant lack of research on adapting current digital forensic tools and techniques to a cloud environment. Data acquisition is the first and most important process within digital forensics – to ensure data integrity and admissibility. However, access to data and the control of resources in the cloud is still very much provider-dependent and complicated by the very nature of the multi-tenanted operating environment. Thus, investigators have no option but to rely on cloud providers to acquire evidence, assuming they would be willing or are required to by law. Furthermore, the evidence collected by the Cloud Service Providers (CSPs) is still questionable as there is no way to verify the validity of this evidence and whether evidence has already been lost. This paper proposes a forensic acquisition and analysis model that fundamentally shifts responsibility of the data back to the data owner rather than relying upon a third party. In this manner, organisations are free to undertaken investigations at will requiring no intervention or cooperation from the cloud provider. The model aims to provide a richer and complete set of admissible evidence than what current CSPs are able to provide

    Rethinking Digital Forensics

    Get PDF
    © IAER 2019In the modern socially-driven, knowledge-based virtual computing environment in which organisations are operating, the current digital forensics tools and practices can no longer meet the need for scientific rigour. There has been an exponential increase in the complexity of the networks with the rise of the Internet of Things, cloud technologies and fog computing altering business operations and models. Adding to the problem are the increased capacity of storage devices and the increased diversity of devices that are attached to networks, operating autonomously. We argue that the laws and standards that have been written, the processes, procedures and tools that are in common use are increasingly not capable of ensuring the requirement for scientific integrity. This paper looks at a number of issues with current practice and discusses measures that can be taken to improve the potential of achieving scientific rigour for digital forensics in the current and developing landscapePeer reviewe
    • …
    corecore