49,796 research outputs found
Kalman-filter control schemes for fringe tracking. Development and application to VLTI/GRAVITY
The implementation of fringe tracking for optical interferometers is
inevitable when optimal exploitation of the instrumental capacities is desired.
Fringe tracking allows continuous fringe observation, considerably increasing
the sensitivity of the interferometric system. In addition to the correction of
atmospheric path-length differences, a decent control algorithm should correct
for disturbances introduced by instrumental vibrations, and deal with other
errors propagating in the optical trains. We attempt to construct control
schemes based on Kalman filters. Kalman filtering is an optimal data processing
algorithm for tracking and correcting a system on which observations are
performed. As a direct application, control schemes are designed for GRAVITY, a
future four-telescope near-infrared beam combiner for the Very Large Telescope
Interferometer (VLTI). We base our study on recent work in adaptive-optics
control. The technique is to describe perturbations of fringe phases in terms
of an a priori model. The model allows us to optimize the tracking of fringes,
in that it is adapted to the prevailing perturbations. Since the model is of a
parametric nature, a parameter identification needs to be included. Different
possibilities exist to generalize to the four-telescope fringe tracking that is
useful for GRAVITY. On the basis of a two-telescope Kalman-filtering control
algorithm, a set of two properly working control algorithms for four-telescope
fringe tracking is constructed. The control schemes are designed to take into
account flux problems and low-signal baselines. First simulations of the
fringe-tracking process indicate that the defined schemes meet the requirements
for GRAVITY and allow us to distinguish in performance. In a future paper, we
will compare the performances of classical fringe tracking to our Kalman-filter
control.Comment: 17 pages, 8 figures, accepted for publication in A&
Towards controlled Fizeau observations with the Large Binocular Telescope
The Large Binocular Telescope Interferometer (LBTI) can perform Fizeau
interferometry in the focal plane, which accesses spatial information out to
the LBT's full 22.7-m edge-to-edge baseline. This mode has previously been used
to obtain science data, but has been limited to observations where the optical
path difference (OPD) between the two beams is not controlled, resulting in
unstable fringes on the science detectors. To maximize the science return, we
are endeavoring to stabilize the OPD and tip-tilt variations and make the LBTI
Fizeau mode optimized and routine. Here we outline the optical configuration of
LBTI's Fizeau mode and our strategy for commissioning this observing mode.Comment: 15 pages, 7 figures, to appear in the Proceedings of the SPIE (SPIE
Astronomical Telescopes + Instrumentation 2018; Optical and Infrared
Interferometry and Imaging VI
Keck Interferometer Nuller Data Reduction and On-Sky Performance
We describe the Keck Interferometer nuller theory of operation, data reduction, and on-sky performance, particularly as it applies to the nuller exozodiacal dust key science program that was carried out between 2008 February and 2009 January. We review the nuller implementation, including the detailed phasor processing involved in implementing the null-peak mode used for science data and the sequencing used for science observing. We then describe the Level 1 reduction to convert the instrument telemetry streams to raw null leakages, and the Level 2 reduction to provide calibrated null leakages. The Level 1 reduction uses conservative, primarily linear processing, implemented consistently for science and calibrator stars. The Level 2 processing is more flexible, and uses diameters for the calibrator stars measured contemporaneously with the interferometer’s K-band cophasing system in order to provide the requisite accuracy. Using the key science data set of 462 total scans, we assess the instrument performance for sensitivity and systematic error. At 2.0 Jy we achieve a photometrically-limited null leakage uncertainty of 0.25% rms per 10 minutes of integration time in our broadband channel. From analysis of the Level 2 reductions, we estimate a systematic noise floor for bright stars of ~0.2% rms null leakage uncertainty per observing cluster in the broadband channel. A similar analysis is performed for the narrowband channels. We also provide additional information needed for science reduction, including details on the instrument beam pattern and the basic astrophysical response of the system, and references to the data reduction and modeling tools
FU Orionis resolved by infrared long baseline interferometry at a 2-AU scale
We present the first infrared interferometric observations of a young stellar
object with a spatial projected resolution better than 2 AU. The observations
were obtained with the Palomar Testbed Interferometer. FU Ori exhibits a
visibility of V^2 =0.72 +/- 0.07 for a 103 +/- 5 m projected baseline at lambda
= 2.2 microns. The data are consistent on the spatial scale probed by PTI both
with a binary system scenario (maximum magnitude difference of 2.7 +/- 0.5 mag
and smallest separation of 0.35 +/- 0.05 AU) and a standard luminous accretion
disk model (approx. accretion rate of 6e-5 Mo/yr) where the thermal emission
dominates the stellar scattering, and inconsistent with a single stellar
photosphere.Comment: 13 pages, 4 figures, accepted for publication in ApJ
Parsec-scale dust distributions in Seyfert galaxies - Results of the MIDI AGN snapshot survey
The emission of warm dust dominates the mid-infrared spectra of active
galactic nuclei (AGN). Only interferometric observations provide the necessary
angular resolution to resolve the nuclear dust and to study its distribution
and properties. The investigation of dust in AGN cores is hence one of the main
science goals for the MID-infrared Interferometric instrument MIDI at the VLTI.
As the first step, the feasibility of AGN observations was verified and the
most promising sources for detailed studies were identified. This was carried
out in a "snapshot survey" with MIDI using Guaranteed Time Observations. In the
survey, observations were attempted for 13 of the brightest AGN in the
mid-infrared which are visible from Paranal. The results of the three
brightest, best studied sources have been published in separate papers. Here we
present the interferometric observations for the remaining 10, fainter AGN. For
8 of these, interferometric measurements could be carried out. Size estimates
or limits on the spatial extent of the AGN-heated dust were derived from the
interferometric data of 7 AGN. These indicate that the dust distributions are
compact, with sizes on the order of a few parsec. The derived sizes roughly
scale with the square root of the luminosity in the mid-infrared, s ~ sqrt(L),
with no clear distinction between type 1 and type 2 objects. This is in
agreement with a model of nearly optically thick dust structures heated to T ~
300 K. For three sources, the 10 micron feature due to silicates is tentatively
detected either in emission or in absorption. Based on the results for all AGN
studied with MIDI so far, we conclude that in the mid-infrared the differences
between individual galactic nuclei are greater than the generic differences
between type 1 and type 2 objects.Comment: 18 pages, 8 figures, updated to version published in A&A 502, 67-8
Circular polarization measurement in millimeter-wavelength spectral-line VLBI observations
This paper considers the problem of accurate measurement of circular
polarization in imaging spectral-line VLBI observations in the lambda=7 mm and
lambda=3 mm wavelength bands. This capability is especially valuable for the
full observational study of compact, polarized SiO maser components in the
near-circumstellar environment of late-type, evolved stars. Circular VLBI
polarimetry provides important constraints on SiO maser astrophysics, including
the theory of polarized maser emission transport, and on the strength and
distribution of the stellar magnetic field and its dynamical role in this
critical circumstellar region. We perform an analysis here of the data model
containing the instrumental factors that limit the accuracy of circular
polarization measurements in such observations, and present a corresponding
data reduction algorithm for their correction. The algorithm is an enhancement
of existing spectral line VLBI polarimetry methods using autocorrelation data
for calibration, but with innovations in bandpass determination,
autocorrelation polarization self-calibration, and general optimizations for
the case of low SNR, as applicable at these wavelengths. We present an example
data reduction at mm and derive an estimate of the predicted
accuracy of the method of m_c < 0.5% or better at lambda=7 mm and m_c < 0.5-1%
or better at lambda=3 mm. Both the strengths and weaknesses of the proposed
algorithm are discussed, along with suggestions for future work.Comment: 23 pages, 13 figure
The PRIMA fringe sensor unit
The Fringe Sensor Unit (FSU) is the central element of the Phase Referenced
Imaging and Micro-arcsecond Astrometry (PRIMA) dual-feed facility and provides
fringe sensing for all observation modes, comprising off-axis fringe tracking,
phase referenced imaging, and high-accuracy narrow-angle astrometry. It is
installed at the Very Large Telescope Interferometer (VLTI) and successfully
servoed the fringe tracking loop during the initial commissioning phase. Unique
among interferometric beam combiners, the FSU uses spatial phase modulation in
bulk optics to retrieve real-time estimates of fringe phase after spatial
filtering. A R=20 spectrometer across the K-band makes the retrieval of the
group delay signal possible. The FSU was integrated and aligned at the VLTI in
summer 2008. It yields phase and group delay measurements at sampling rates up
to 2 kHz, which are used to drive the fringe tracking control loop. During the
first commissioning runs, the FSU was used to track the fringes of stars with
K-band magnitudes as faint as m_K=9.0, using two VLTI Auxiliary Telescopes (AT)
and baselines of up to 96 m. Fringe tracking using two Very Large Telescope
(VLT) Unit Telescopes (UT) was demonstrated. During initial commissioning and
combining stellar light with two ATs, the FSU showed its ability to improve the
VLTI sensitivity in K-band by more than one magnitude towards fainter objects,
which is of fundamental importance to achieve the scientific objectives of
PRIMA.Comment: 19 pages, 23 figures. minor changes and language editing. this
version equals the published articl
- …
