5 research outputs found

    Virtual prototyping of vehicular electric steering assistance system using co-simulations

    Get PDF
    Virtual prototyping is a practical necessity in vehicle system development. From desktop simulation to track testing, several simulation approaches, such as co-simulation and hardware-in-loop (HIL) simulation, are used. However, due to interfacing problems, the consistency of testing results may not be ensured. Correspondingly, inherent inaccuracies result from numerical coupling error and non-transparent HIL interface, which involves control tracking error, delay error, and attached hardware and noise effects. This work aims to resolve these problems and provide seamless virtual prototypes for vehicle and electric power-assisted steering (EPAS) system development.The accuracy and stability of explicit parallel co-simulation and HIL simulation are investigated. The imperfect factors propagate in the simulation tools like perturbations, yield inaccuracy, and even instability according to system dynamics. Hence, reducing perturbations (coupling problem) and improving system robustness (architecture problem) are considered.In the coupling problem, a delay compensation method relying on adaptive filters is developed for real-time simulation. A novel co-simulation coupling method on H-infinity synthesis is developed to improve accuracy for a wide frequency range and achieve low computational cost. In the architecture problem, a force(torque)-velocity coupling approach is employed. The application of a force (torque) variable to a component with considerable impedance, e.g., the steering rack (EPAS motor), yields a small loop gain as well as robust co-simulation and HIL simulation. On a given EPAS HIL system, an interface algorithm is developed for virtually shifting the impedance, thus enhancing system robustness.The theoretical findings and formulated methods are tested on generic benchmarks and implemented on a vehicle-EPAS engineering case. In addition to the acceleration of simulation speed, accuracy and robustness are also improved. Consequently, consistent testing results and extended validated ranges of virtual prototypes are obtained

    Steering control for haptic feedback and active safety functions

    Get PDF
    Steering feedback is an important element that defines driver–vehicle interaction. It strongly affects driving performance and is primarily dependent on the steering actuator\u27s control strategy. Typically, the control method is open loop, that is without any reference tracking; and its drawbacks are hardware dependent steering feedback response and attenuated driver–environment transparency. This thesis investigates a closed-loop control method for electric power assisted steering and steer-by-wire systems. The advantages of this method, compared to open loop, are better hardware impedance compensation, system independent response, explicit transparency control and direct interface to active safety functions.The closed-loop architecture, outlined in this thesis, includes a reference model, a feedback controller and a disturbance observer. The feedback controller forms the inner loop and it ensures: reference tracking, hardware impedance compensation and robustness against the coupling uncertainties. Two different causalities are studied: torque and position control. The two are objectively compared from the perspective of (uncoupled and coupled) stability, tracking performance, robustness, and transparency.The reference model forms the outer loop and defines a torque or position reference variable, depending on the causality. Different haptic feedback functions are implemented to control the following parameters: inertia, damping, Coulomb friction and transparency. Transparency control in this application is particularly novel, which is sequentially achieved. For non-transparent steering feedback, an environment model is developed such that the reference variable is a function of virtual dynamics. Consequently, the driver–steering interaction is independent from the actual environment. Whereas, for the driver–environment transparency, the environment interaction is estimated using an observer; and then the estimated signal is fed back to the reference model. Furthermore, an optimization-based transparency algorithm is proposed. This renders the closed-loop system transparent in case of environmental uncertainty, even if the initial condition is non-transparent.The steering related active safety functions can be directly realized using the closed-loop steering feedback controller. This implies, but is not limited to, an angle overlay from the vehicle motion control functions and a torque overlay from the haptic support functions.Throughout the thesis, both experimental and the theoretical findings are corroborated. This includes a real-time implementation of the torque and position control strategies. In general, it can be concluded that position control lacks performance and robustness due to high and/or varying system inertia. Though the problem is somewhat mitigated by a robust H-infinity controller, the high frequency haptic performance remains compromised. Whereas, the required objectives are simultaneously achieved using a torque controller

    Friction Compensation Control for Power Steering

    No full text

    A Friction Compensation Control for Power Steering

    No full text
    The effects of friction are critical to the dynamics of electric power steering (EPS). On the one hand, friction contributes to the stability of the system and filters some of the disturbances (road vibration, etc.). On the other hand, it affects negatively the driving feel and refrains from accurate positioning of the steering wheel. Also, for steering manufacturers, friction hinders the development and tuning of the assistance strategy. Therefore, being able to control or eventually suppress friction in EPS is a real issue. In this paper, a control strategy for the active compensation of friction in a column-assist type electric power steering (C- EPS) is presented. The assist motor and the electronic control unit are used to cancel the friction effect in order to imitate the behavior of an ideal, frictionless system. The feasibility of this strategy is demonstrated on the power column (the upper part of the steering system) using the same information (signals) as that available in an actual product. The proposed control is based on a model of the power column including slip and load dependent friction forces. For this purpose, a detailed simulation model, developed and validated in a previous work, is reduced into a lower-order model to enable real time computation. The LuGre model is used to compute both the static and dynamic friction forces with continuous formulation. The control architecture is composed of two cascaded feedback loops. The internal loop estimates the internal friction of the system and compensates it through the motor input. The external loop contains a frictionless reference model used as a trajectory planner and a linear controller which attempts to minimize the error between the plant response and the reference response. The stability and the robustness of the control strategy are analyzed formally. Specifically, it is shown that the limit error between the plant and the reference responses can be made arbitrarily small with appropriate values of the gains. Experi- mental results demonstrate that the control strategy is successful in tracking the frictionless, reference trajectory and confirm the robustness against inaccurate friction parameters
    corecore