7 research outputs found

    Frequent occurrence of recognition Site-like sequences in the restriction endonucleases

    Get PDF
    BACKGROUND: There are two different theories about the development of the genetic code. Woese suggested that it was developed in connection with the amino acid repertoire, while Crick argued that any connection between codons and amino acids is only the result of an "accident". This question is fundamental to understand the nature of specific protein-nucleic acid interactions. RESULTS: The nature of specific protein-nucleic acid interaction between restriction endonucleases (RE) and their recognition sequences (RS) was studied by bioinformatics methods. It was found that the frequency of 5–6 residue long RS-like oligonucleotides is unexpectedly high in the nucleic acid sequence of the corresponding RE (p < 0.05 and p < 0.001 respectively, n = 7). There is an extensive conservation of these RS-like sequences in RE isoschizomers. A review of the seven available crystallographic studies showed that the amino acids coded by codons that are subsets of recognition sequences were often closely located to the RS itself and they were in many cases directly adjacent to the codon-like triplets in the RS. Fifty-five examples of this codon-amino acid co-localization are found and analyzed, which represents 41.5% of total 132 amino acids which are localized within 8 Å distance to the C1' atoms in the DNA. The average distance between the closest atoms in the codons and amino acids is 5.5 +/- 0.2 Å (mean +/- S.E.M, n = 55), while the distance between the nitrogen and oxygen atoms of the co-localized molecules is significantly shorter, (3.4 +/- 0.2 Å, p < 0.001, n = 15), when positively charged amino acids are involved. This is indicating that an interaction between the nucleic- and amino acids might occur. CONCLUSION: We interpret these results in favor of Woese and suggest that the genetic code is "rational" and there is a stereospecific relationship between the codes and the amino acids

    SeqX: a tool to detect, analyze and visualize residue co-locations in protein and nucleic acid structures

    Get PDF
    BACKGROUND: The interacting residues of protein and nucleic acid sequences are close to each other – they are co-located. Structure databases (like Protein Data Bank, PDB and Nucleic Acid Data Bank, NDB) contain all information about these co-locations; however it is not an easy task to penetrate this complex information. We developed a JAVA tool, called SeqX for this purpose. RESULTS: SeqX tool is useful to detect, analyze and visualize residue co-locations in protein and nucleic acid structures. The user a. selects a structure from PDB; b. chooses an atom that is commonly present in every residues of the nucleic acid and/or protein structure(s) c. defines a distance from these atoms (3–15 Å). The SeqX tool detects every residue that is located within the defined distances from the defined "backbone" atom(s); provides a DotPlot-like visualization (Residues Contact Map), and calculates the frequency of every possible residue pairs (Residue Contact Table) in the observed structure. It is possible to exclude +/- 1 to 10 neighbor residues in the same polymeric chain from detection, which greatly improves the specificity of detections (up to 60% when tested on dsDNA). Results obtained on protein structures showed highly significant correlations with results obtained from literature (p < 0.0001, n = 210, four different subsets). The co-location frequency of physico-chemically compatible amino acids is significantly higher than is calculated and expected in random protein sequences (p < 0.0001, n = 80). CONCLUSION: The tool is simple and easy to use and provides a quick and reliable visualization and analyses of residue co-locations in protein and nucleic acid structures. AVAILABILITY AND REQUIREMENTS: SeqX, Java J2SE Runtime Environment 5.0 (available from [see Additional file 1] ) and at least a 1 GHz processor and with a minimum 256 Mb RAM. Source codes are available from the authors

    Amino acid size, charge, hydropathy indices and matrices for protein structure analysis

    Get PDF
    BACKGROUND: Prediction of protein folding and specific interactions from only the sequence (ab initio) is a major challenge in bioinformatics. It is believed that such prediction will prove possible if Anfinsen's thermodynamic principle is correct for all kinds of proteins, and all the information necessary to form a concrete 3D structure is indeed present in the sequence. RESULTS: We indexed the 200 possible amino acid pairs for their compatibility regarding the three major physicochemical properties – size, charge and hydrophobicity – and constructed Size, Charge and Hydropathy Compatibility Indices and Matrices (SCI & SCM, CCI & CCM, and HCI & HCM). Each index characterized the expected strength of interaction (compatibility) of two amino acids by numbers from 1 (not compatible) to 20 (highly compatible). We found statistically significant positive correlations between these indices and the propensity for amino acid co-locations in real protein structures (a sample containing total 34630 co-locations in 80 different protein structures): for HCI: p < 0.01, n = 400 in 10 subgroups; for SCI p < 1.3E-08, n = 400 in 10 subgroups; for CCI: p < 0.01, n = 175). Size compatibility between residues (well known to exist in nucleic acids) is a novel observation for proteins. Regression analyzes indicated at least 7 well distinguished clusters regarding size compatibility and 5 clusters of charge compatibility. We tried to predict or reconstruct simple 2D representations of 3D structures from the sequence using these matrices by applying a dot plot-like method. The location and pattern of the most compatible subsequences was very similar or identical when the three fundamentally different matrices were used, which indicates the consistency of physicochemical compatibility. However, it was not sufficient to choose one preferred configuration between the many possible predicted options. CONCLUSION: Indexing of amino acids for major physico-chemical properties is a powerful approach to understanding and assisting protein design. However, it is probably insufficient itself for complete ab initio structure prediction

    Nucleic acid chaperons: a theory of an RNA-assisted protein folding

    Get PDF
    BACKGROUND: Proteins are assumed to contain all the information necessary for unambiguous folding (Anfinsen's principle). However, ab initio structure prediction is often not successful because the amino acid sequence itself is not sufficient to guide between endless folding possibilities. It seems to be a logical to try to find the "missing" information in nucleic acids, in the redundant codon base. RESULTS: mRNA energy dot plots and protein residue contact maps were found to be rather similar. The structure of mRNA is also conserved if the protein structure is conserved, even if the sequence similarity is low. These observations led me to suppose that some similarity might exist between nucleic acid and protein folding. I found that amino acid pairs, which are co-located in the protein structure, are preferentially coded by complementary codons. This codon complementarity is not perfect; it is suboptimal where the 1st and 3rd codon residues are complementary to each other in reverse orientation, while the 2nd codon letters may be, but are not necessarily, complementary. CONCLUSION: Partial complementary coding of co-locating amino acids in protein structures suggests that mRNA assists in protein folding and functions not only as a template but even as a chaperon during translation. This function explains the role of wobble bases and answers the mystery of why we have a redundant codon base

    The concept of RNA-assisted protein folding: the role of tRNA

    Get PDF
    We suggest that tRNA actively participates in the transfer of 3D information from mRNA to peptides - in addition to its well-known, "classical" role of translating the 3-letter RNA codes into the one letter protein code. The tRNA molecule displays a series of thermodynamically favored configurations during translation, a movement which places the codon and coded amino acids in proximity to each other and make physical contact between some amino acids and their codons possible. This specific codon-amino acid interaction of some selected amino acids is necessary for the transfer of spatial information from mRNA to coded proteins, and is known as RNA-assisted protein folding

    The Proteomic Code: a molecular recognition code for proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Proteomic Code is a set of rules by which information in genetic material is transferred into the physico-chemical properties of amino acids. It determines how individual amino acids interact with each other during folding and in specific protein-protein interactions. The Proteomic Code is part of the redundant Genetic Code.</p> <p>Review</p> <p>The 25-year-old history of this concept is reviewed from the first independent suggestions by Biro and Mekler, through the works of Blalock, Root-Bernstein, Siemion, Miller and others, followed by the discovery of a Common Periodic Table of Codons and Nucleic Acids in 2003 and culminating in the recent conceptualization of partial complementary coding of interacting amino acids as well as the theory of the nucleic acid-assisted protein folding.</p> <p>Methods and conclusions</p> <p>A novel cloning method for the design and production of specific, high-affinity-reacting proteins (SHARP) is presented. This method is based on the concept of proteomic codes and is suitable for large-scale, industrial production of specifically interacting peptides.</p
    corecore