59,361 research outputs found

    Experimental assessment of periodic piezoelectric composite arrays incorporating an anisotropic passive phase

    Get PDF
    This paper discusses the experimental assessment of a number of piezoelectric composite array structures incorporating a novel passive phase exhibiting anisotropic elastic properties. The passive polymer phase has been designed to limit inter-element crosstalk by attenuating lateral propagation across the array aperture. A selection of water coupled linear array coupons, operating with a nominal 400 kHz fundamental thickness mode frequency, has been prepared comprising the novel anisotropic passive phase. As a control, comparisons are made to similarly configured devices employing isotropic filler materials. Scanning laser vibrometry and measurements of electrical impedance characteristic on the array substrate demonstrate that the fundamental thickness mode of the devices configured with anisotropic polymer fillers is not contaminated by parasitic modes of vibration. The reasons for this are explained by considering the dispersion characteristics of the substrate. Water coupled hydrophone measurements of array element directivity; transmit voltage response and subsequently efficiency calculations illustrate that the observed reduction in mechanical cross talk has not been achieved at the expense of element sensitivity. Finally, comparisons between the experimental data and the PZFlex derived array responses are made, with good corroboration demonstrate

    Performance of periodic piezoelectric composite arrays incorporating a passive phase exhibiting anisotropic properties

    Get PDF
    This paper explores the minimisation of interelement cross talk in 1-D and 2-D periodic composite array structures through the incorporation of a passive phase exhibiting anisotropic elastic properties. Initially the PZFlex finite element code was used to monitor array aperture response as a function of material properties. It is shown that in array structures comprising passive polymer materials possessing low longitudinal loss and high shear loss, inter-element mechanical cross talk is reduced, without a concomitant reduction in element sensitivity. A number of polymer materials with the desired properties were synthesised and their elastic character confirmed through a program of materials characterisation. Finally, a range of experimental devices exhibiting improved directional response, as a result of a significant reduction in interelement cross talk, are presented and the predicted array characteristics are shown to compare favourably in each case

    Investigating the influence of the constituent materials on the performance of periodic piezoelectric composite arrays

    Get PDF
    This paper describes a theoretical investigation into the influence of the constituent materials on periodic composite array transducer performance. A finite element (FE) model, configured in PZFlex, is used to analyze the performance of a wedge coupled array transducer operating into a steel component. Here, the improvements offered by new single crystal piezoelectric materials are compared to standard PZTā€based configurations. In addition, new passive polymer materials, possessing low longitudinal loss and high shear loss, are evaluated for their potential to significantly reduce interā€element mechanical cross talk. The FE results illustrate the potential for the next generation of array transducers incorporating these new materials and this is highlighted in the Aā€scan predictions from simulated defects

    On micro-structural effects in dielectric mixtures

    Full text link
    The paper presents numerical simulations performed on dielectric properties of two-dimensional binary composites on eleven regular space filling tessellations. First, significant contributions of different parameters, which play an important role in the electrical properties of the composite, are introduced both for designing and analyzing material mixtures. Later, influence of structural differences and intrinsic electrical properties of constituents on the composite's over all electrical properties are investigated. The structural differences are resolved by the spectral density representation approach. The numerical technique, without any {\em a-priori} assumptions, for extracting the spectral density function is also presented.Comment: 24 pages, 8 figure and 7 tables. It is submitted to IEEE Transactions on Dielectrics and Electrical Insulatio
    • ā€¦
    corecore